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What assumptions are sufficient for NIZKs?
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* Quadratic Residuosity Assumption (QR) [BFM88]
* Factoring [FLS90]

* Bilinear Maps [CHKO3, GOS06, GOS006]

* Learning with Errors (LWE) [CCHLRRW19, PS19]

* Learning Parity with Noise and Trapdoor Hash Function [BKMZ20]
(Trapdoor Hash Function is known from DDH/LWE/QR/DCR)

* NIZKs from discrete-log related assumptions?



Question (1): Do there exist NIZKs from DDH?




Pairing vs Non-pairing Groups

____________ Pairing_____Non-Pairing _

Attribute-Based

Eneryption [SW04,GPSWO06] ?
'd;‘z‘fjl;ﬁﬁffd [BFO1] (DG17]

NIZKs [CHKO03,GOS06] ?”



Pairing vs Non-pairing Groups

____________ Pairing_____Non-Pairing _

Attribute-Based

At ISW04,GPSWO6] ?
'dggg:yy[;ﬁg;ed 'BFO1] 'DG17]
NIZKs [CHKO03,GOS06] ?”

Are the gaps inherent? ‘




Pairing vs Non-pairing Groups

____________ Pairing_____Non-Pairing _

Attribute-Based

At ISW04,GPSWO6] ?
'dggg:yy‘;ﬁg;ed 'BFO1] 'DG17]
NIZKs [CHKO03,GOS06] ?”

Are the gaps inherent? ‘

* From non-standard assumptions, NIZKs are known from non-pairing groups [CCRR18,CKU20]



Our Result (1):




Our Result (1):

* NIZK arguments for NP:




Our Result (1):

* NIZK arguments for NP:

Zero-Knowledge

Statistical

Computational

Soundness

Non-adaptive

Adaptive

Random

Random




Our Result (1):

* NIZK arguments for NP:

Zero-Knowledge

Computational

Statistical

Soundness

Non-adaptive

Adaptive

Random

Random

* From sub-exponential DDH In the standard non-pairing groups.




Sub-exponential DDH

* 30 < c¢ <1,V non-uniform PPT adversary D, V sufficiently large 4,
Pr[D(1%, g, g%, gP, g*?) = 1| — Pr[D(1%, g, g%, g%, g¢) = 1]| < 27#

a<—Zp,b<—Zp,c<—Zp
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Our Result (2):

Statistical Zap arguments from sub-exponential DDH,
with non-adaptive soundness.

Statistical Zaps from group-based assumptions
were not known.
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Receiver's Side: Function Hiding

* Function Hiding: F is hiding.
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Trapdoor Hash Functions
Previous Works:

* [DGIMMO19] TDH for index predicate & linear functions from
DDH/LWE/QR/DCR

* [BKMZ20] TDH for constant-degree polynomials from
DDH/LWE/QR/DCR

By leveraging the power of interaction,
can we handle a larger class of circuits?

Applications:
* Secure computation, rate-1 oblivious transfer,
private information retrieval etc. [DGIMMO19]
* Correlation intractable hash and NIZKs [BKM20]
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O(1)-round Interactive TD
for TC? from DDH.

(TC": constant-depth threshold circuits.)

(Can be generalized to poly-round for P/poly circuits)
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* Key Generation: k < Gen(1%)
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Correlation Intractable Hash (CIH)

Previous Works:

e [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
 [BKMZ20] CIH from TDH for approximate constant-degree polynomials.

Can we build CIH for a larger class of circuits from
assumptions other than LWE?

Applications:
* NIZKs [CCHLRRW19,PS519,BKM?20]

* SNARGs [CCHLRRW19,JKKZ20]
* Verifiable Delay Functions [LV20],
* PPAD-hardness [CHKPRR19,LV20,JKKZ20].



Intermediate Result (2):

Correlation Intractable Hash for TCY
from sub-exponential DDH.




Intermediate Result (2):

Correlation Intractable Hash for TCY
from sub-exponential DDH.

Assuming DDH is hard for sub-exponential time adversary, we
can also obtain CIH for O(loglog A)-depth threshold circuits.
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Known constructions of CIH can only handle
efficiently computable BAD
BAD: a* the unique B~
Verifier accepts = B* = CIH,(a*) = BAD(a™): Contradiction to Correlation Intractability
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PS19, BKM?20]
Trapdoor X-protocol trapdoor: td

CRS CRS ™
é; X & L % é;

Cheating V Cheating o
Prover a* = Com(m™) Prover
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ﬁ*
Y >

Correlation Intractability needs to at least capture the Com.Ext(td,-) circuit
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BAD: ¢ m the unique bad S
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Instantiate Trapdoor Commitment from DDH

Commitment — ElGamal Encryption
Extraction —» ElGamal Decryption

If we have CIH for ElGamal Decryption circuit fromm DDH,
then we can hope to construct NIZKs from DDH.
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Previous CIH from DDH [BKM20]

4 )
]
< — —) Hk()
. > CIH for approximable relations
TDH for 0(1)-degree poly. of O(1)-degree poly.

Approximating the ElGamal Decryption by
O(1)-degree poly is not known

* [BKM20] used trapdoor commitment from LPN, where
Com. Extraction(td,-) € { approximate O(1)-degree poly. }
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Our Approach

Construct CIH for TC®

0(1)-round ITDH for TC®
4 )

<€
- CIH for TC®
E—
n
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Compute beyond 0(1)-degree poly
by leveraging interaction
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Sender Receilver
- 4 )
X —> < - «— F
_ o o (multi-bit output)
* Function Hiding: F is hiding. L S
 Laconic communication ]
on sender side: <
<2 _ B .
* Additive reconstruction: e D d = F(X)

encoding decoding
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Sender N Receiver
X —> «— F
J
Hy (%)= 8 D| u
Equal = - Equal!
F(X)|= é D d
d IS “sparse”, oo
Pr [Elx: d = u] = negl

Since it only depends on B (0,1}
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If correctness only holds
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F(X)|= é D d
Equal . — Equal!
Hy.(X)|= é d| u
Sparsity of d:
Pr [3%:d =] < 272%™ CPr [3wd=1]>270@
u<{0,11" K u<{0,11n
(Very small!) (Not too small)

If n > A, contradiction!
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* Function Hiding: V F, st;, KGen(F,st;) =, Uniformly Random String
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A
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Guess
A2 ]
<
_ Y Guess 8
*  Guess Ml correctly with Pr. 27% — 2% (not too small)
Tt =l

Uniform Random | | Sub-exponential
Guessing Function Hiding
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Moditied proof of Correlation Intractability

* Extend to O(1) rounds (or O(log log A)-rounds):

< A

/11<12<),3

Sparsity of d :

Pr
u<{0,1"

[EIJ_C): d = t_i] < 270Mm)

(Very small!)

<

From Guessing Correctness:

Pr
u<{0,1}n

[3;5: d = ﬁ] > 2—0(A1+2z..+4y)

(Not too small)

If n > A, Correlation Intractable!
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Background: Threshold Gates and TC®

* Threshold Gate (x € {0,1}™):

1, weight(x) >t
Th® (%) =

0, Otherwise

« TCY: constant depth circuits consists of {NOT, Threshold} gates

* For simplicity, let's only consider the threshold gates.
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_ 0, Otherwise
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weight(i’ an j}) — z x; D y; We extend TDH (from DDH)

to linear functions over Z,,,1

= > (A=x)-yi+x-(1-y) mod(n+1)

* Use TDH for Linear Functions over Z,,;1

X —>

e €&—

-

2 (. (D
TDH for linear functions | < Vei8htC ©¥)

over Z, .1 —> d




weight(X @ y) as a Linear Function of x

weight(i’ an 5}) — z x; D y; We extend TDH (from DDH)

, to linear functions over Z,,,1
l

= > (A=x)-yi+x-(1-y) mod(n+1)

l

* Use TDH for Linear Functions over Z,,;1

X —>

e €&—

-

\_

) - . =
TDH for linear functions | < VeightC ©¥)

over Z,.1 )— d

How do we use TDH to compute (e + d) mod (n +1) =" ¢ ? ‘
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Comparison as a Linear Function

« A simpler case: equality check e =7 d

e,d € 10,1, ...,n]: a poly range!

e > 1, =

d—)ld:

0

1

n

0

0

0

0

(e =’ d) — <1811d>
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Comparison as a Linear Function

* Comparison: (e + d) mod (n +1) >’ ¢

o3Fj>tdle+d)mod(n+1) =

Equality Check! e=( —d)mod(n+1)

= < 16'2 L(j—a) mod (n+1) == 1
I
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ITDH for An Xor-then-Threshold Gate:

Putting Things Together

X —>

€ €«<—

l, —>

-

"\ «<— weight(: B ¥)

> —> d

< Z 1(j—d) mod (n+1) >
j>t

J

!

d' = weight(x @y) =’ ¢



ITDH for An Xor-then-Threshold Gate:
Putting Things Together

Nonlinear

—

—

—

Intermediate
Processing by Sender l,

s ~N
T m

_ ),

s ~N

-

D

_ 1/
e’ b

<«— weight(- B y)

—l d

.
™ )

1(j—d) mod (n+1)
j>t

Intermediate

Processing by Receiver

d' = weight(x @y) =’ ¢



Summary of Results

* NIZKs from sub-exponential DDH:

Zero-Knowledge Soundness

Statistical Non-adaptive Random

Computational Adaptive Random

* 0(1)-round Interactive Trapdoor Hashing Protocol for TC®

* Correlation Intractable Hash for TCY.

* Statistical Zap arguments from sub-exponential DDH.



Open Questions

* NIZKs from polynomial-hard DDH?
* NIZKs from public key encryption?
* Correlation intractable hash for P/poly from DDH?



Thank you!

Q& A



