Non-Interactive Zero Knowledge

from Sub-exponential DDH

Abhishek Jain Zhengzhong Jin

JOHNS HOPKINS

UNIVERSITY

Non-Interactive Zero Knowledge (NIZK)

Setup

CRS / \ CRS

Prover(x, w) Verifier(x)

Non-Interactive Zero Knowledge (NIZK)

Setup

/ \
CRS “ c L7 CRS -
% |/

Prover(x, w) Verifier(x)

Non-Interactive Zero Knowledge (NIZK)

Setup

/ \
C RS « X E Ln C RS ﬂ
% |/

Prover(x, w) Verifier(x)

Non-Interactive Zero Knowledge (NIZK)

Setup

/ \
CRS “« x E L” CRS ﬂ

Prover(x, w) Verifier(x)

Accept/Reject

Non-Interactive Zero Knowledge (NIZK)

Setup

/ \
@ CRS (lx E Ln CRS %
%

Prover(x, w) Verifier(x)

Accept/Reject

* Completeness: If x € L, verifier accepts the honestly generated proof.
* Soundness: for any x & L, the verifier rejects.
* Zero-Knowledge: the proof reveals nothing beyond x € L.

Non-Interactive Zero Knowledge (NIZK)

Setup

/ \
@ CRS (lx E Ln CRS %
%

Prover(x, w) Verifier(x)

Accept/Reject

* Completeness: If x € L, verifier accepts the honestly generated proof.
* Soundness: for any x & L, the verifier rejects.
* Zero-Knowledge: the proof reveals nothing beyond x € L.

Non-Interactive Zero Knowledge (NIZK)

Setup

/ \
@ CRS (lx E Ln CRS %
%

Prover(x, w) Verifier(x)

Accept/Reject

* Completeness: If x € L, verifier accepts the honestly generated proof.
* Soundness: for any x & L, the verifier rejects.
* Zero-Knowledge: the proof reveals nothing beyond x € L.

What assumptions are sufficient for NIZKs?

Prior Works

Prior Works

* Quadratic Residuosity Assumption (QR) [BFM88]
* Factoring [FLS90]

* Bilinear Maps [CHKO3, GOS06, GOS006]

* Learning with Errors (LWE) [CCHLRRW19, PS19]

* Learning Parity with Noise and Trapdoor Hash Function [BKMZ20]
(Trapdoor Hash Function is known from DDH/LWE/QR/DCR)

Prior Works

* Quadratic Residuosity Assumption (QR) [BFM88]
* Factoring [FLS90]

* Bilinear Maps [CHKO3, GOS06, GOS006]

* Learning with Errors (LWE) [CCHLRRW19, PS19]

* Learning Parity with Noise and Trapdoor Hash Function [BKMZ20]
(Trapdoor Hash Function is known from DDH/LWE/QR/DCR)

Prior Works

* Quadratic Residuosity Assumption (QR) [BFM88]
* Factoring [FLS90]

* Bilinear Maps [CHKO3, GOS06, GOS006]

* Learning with Errors (LWE) [CCHLRRW19, PS19]

* Learning Parity with Noise and Trapdoor Hash Function [BKMZ20]
(Trapdoor Hash Function is known from DDH/LWE/QR/DCR)

Prior Works

* Quadratic Residuosity Assumption (QR) [BFM88]
* Factoring [FLS90]

* Bilinear Maps [CHKO3, GOS06, GOS006]

* Learning with Errors (LWE) [CCHLRRW19, PS19]

* Learning Parity with Noise and Trapdoor Hash Function [BKMZ20]
(Trapdoor Hash Function is known from DDH/LWE/QR/DCR)

Prior Works

* Quadratic Residuosity Assumption (QR) [BFM88]
* Factoring [FLS90]

* Bilinear Maps [CHKO3, GOS06, GOS006]

* Learning with Errors (LWE) [CCHLRRW19, PS19]

* Learning Parity with Noise and Trapdoor Hash Function [BKMZ20]
(Trapdoor Hash Function is known from DDH/LWE/QR/DCR)

Prior Works

* Quadratic Residuosity Assumption (QR) [BFM88]
* Factoring [FLS90]

* Bilinear Maps [CHKO3, GOS06, GOS006]

* Learning with Errors (LWE) [CCHLRRW19, PS19]

* Learning Parity with Noise and Trapdoor Hash Function [BKMZ20]
(Trapdoor Hash Function is known from DDH/LWE/QR/DCR)

* NIZKs from discrete-log related assumptions?

Question (1): Do there exist NIZKs from DDH?

Pairing vs Non-pairing Groups

____________ Pairing_____Non-Pairing _

Attribute-Based

Eneryption [SW04,GPSWO06] ?
'd;‘z‘fjl;ﬁﬁffd [BFO1] (DG17]

NIZKs [CHKO03,GOS06] ?”

Pairing vs Non-pairing Groups

____________ Pairing_____Non-Pairing _

Attribute-Based

At ISW04,GPSWO6] ?
'dggg:yy[;ﬁg;ed 'BFO1] 'DG17]
NIZKs [CHKO03,GOS06] ?”

Are the gaps inherent? ‘

Pairing vs Non-pairing Groups

____________ Pairing_____Non-Pairing _

Attribute-Based

At ISW04,GPSWO6] ?
'dggg:yy‘;ﬁg;ed 'BFO1] 'DG17]
NIZKs [CHKO03,GOS06] ?”

Are the gaps inherent? ‘

* From non-standard assumptions, NIZKs are known from non-pairing groups [CCRR18,CKU20]

Our Result (1):

Our Result (1):

* NIZK arguments for NP:

Our Result (1):

* NIZK arguments for NP:

Zero-Knowledge

Statistical

Computational

Soundness

Non-adaptive

Adaptive

Random

Random

Our Result (1):

* NIZK arguments for NP:

Zero-Knowledge

Computational

Statistical

Soundness

Non-adaptive

Adaptive

Random

Random

* From sub-exponential DDH In the standard non-pairing groups.

Sub-exponential DDH

* 30 < c¢ <1,V non-uniform PPT adversary D, V sufficiently large 4,
Pr[D(1%, g, g%, gP, g*?) = 1| — Pr[D(1%, g, g%, g%, g¢) = 1]| < 27#

a<—Zp,b<—Zp,c<—Zp

Our Result (2):

Statistical Zap arguments from sub-exponential DDH,
with non-adaptive soundness.

Our Result (2):

Statistical Zap arguments from sub-exponential DDH,
with non-adaptive soundness.

Statistical Zaps from group-based assumptions
were not known.

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Sender

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Sender Receiver

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Sender

-~

~

Receiver

«— F
(multi-bit output)

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Sender

/I

_ /

Receiver

«— F
(multi-bit output)

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Sender

_

>

/I

/

Receiver

«— F
(multi-bit output)

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Sender

_

>

/I

/

Receiver

«— F
(multi-bit output)

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Sender

<€

>

-

/I

/

Receiver

«— F
(multi-bit output)

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Sender Receiver
i I O\ — -
. (multi-bit output)
>
N
<

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Sender Receiver
i I O\ — -
. (multi-bit output)
>
N
<

_ o >/
v y
8 d

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Sender Receiver

i I O\ — -

. (multi-bit output)

\ |
! 7

N -

e d
encoding decoding

Main Tool: Interactive Trapdoor Hashing Protocol (ITDH)

Sender Receiver
i I O\
< (multi-bit output)
B
>
I
<
.,
v v
* Additive reconstruction: E; D d = F(X)

encoding decoding

Sender’s Side: Laconic Communication

Sender Receiver

l
<
Y

Sender’s Side: Laconic Communication

Sender

<!

 Laconic communication
on sender side

-~

|W=4

Receiver

Il <A ,

Receiver's Side: Function Hiding

* Laconic communication

on

Sender

side

/.

<€

.

\

/

Receiver

«— F
(multi-bit output)

Receiver's Side: Function Hiding

* Function Hiding: F is hiding.

* Laconic communication

on

Sender

side

/.

<€

.

~

/

Receiver

«— F
(multi-bit output)

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Sender Recelver

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Sender Recelver

4)

x —> «— F

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Sender Receiver
\

P — — F

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Sender Recelver

P — —F

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Sender Recelver

P — —F

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Sender Recelver

4)

P — TG | —
<€

o J

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Sender Recelver

4)

P — TG | —
<€

o >
td

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Sender Recelver

P — —F

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Sender Recelver

4)

P — TG | —
<€

_ >)
i l td
8 d

encoding decoding

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Sender Recelver

4)

P — TG | —
<€

_ >
i l td
E D d = F(xX)

encoding decoding

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Sender

X —>

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Sender

X —>

 Laconic Communication on the Sender’s Side: IS small

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Recelver

—F

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Receiver
4)
—F
<
* Function Hiding: _ -

ek(F) hides F

Interactive TDH vs Trapdoor Hash Function [DGIMMO19]

Sender

/

P —

\

<€

* Function Hiding: \

i,

ek(F) hides F ¢

-

e

encoding

D

Recelver

<« F

ltd

-

d

- F@®

decoding

 Laconic Communication on the Sender’s Side: IS small

Trapdoor Hash Functions
Previous Works:

Trapdoor Hash Functions
Previous Works:

* [DGIMMO19] TDH for index predicate & linear functions from
DDH/LWE/QR/DCR

* [BKMZ20] TDH for constant-degree polynomials from
DDH/LWE/QR/DCR

Trapdoor Hash Functions
Previous Works:

* [DGIMMO19] TDH for index predicate & linear functions from
DDH/LWE/QR/DCR

* [BKMZ20] TDH for constant-degree polynomials from
DDH/LWE/QR/DCR

Trapdoor Hash Functions
Previous Works:

* [DGIMMO19] TDH for index predicate & linear functions from
DDH/LWE/QR/DCR

* [BKMZ20] TDH for constant-degree polynomials from
DDH/LWE/QR/DCR

Trapdoor Hash Functions
Previous Works:

* [DGIMMO19] TDH for index predicate & linear functions from
DDH/LWE/QR/DCR

* [BKMZ20] TDH for constant-degree polynomials from
DDH/LWE/QR/DCR

Applications:
* Secure computation, rate-1 oblivious transfer,
private information retrieval etc. [DGIMMO19]
* Correlation intractable hash and NIZKs [BKM20]

Trapdoor Hash Functions
Previous Works:

* [DGIMMO19] TDH for index predicate & linear functions from
DDH/LWE/QR/DCR

* [BKMZ20] TDH for constant-degree polynomials from
DDH/LWE/QR/DCR

Applications:
* Secure computation, rate-1 oblivious transfer,
private information retrieval etc. [DGIMMO19]
* Correlation intractable hash and NIZKs [BKM20]

Trapdoor Hash Functions
Previous Works:

* [DGIMMO19] TDH for index predicate & linear functions from
DDH/LWE/QR/DCR

* [BKMZ20] TDH for constant-degree polynomials from
DDH/LWE/QR/DCR

Applications:
* Secure computation, rate-1 oblivious transfer,
private information retrieval etc. [DGIMMO19]
* Correlation intractable hash and NIZKs [BKM20]

Trapdoor Hash Functions
Previous Works:

* [DGIMMO19] TDH for index predicate & linear functions from
DDH/LWE/QR/DCR

* [BKMZ20] TDH for constant-degree polynomials from
DDH/LWE/QR/DCR

Applications:
* Secure computation, rate-1 oblivious transfer,
private information retrieval etc. [DGIMMO19]
* Correlation intractable hash and NIZKs [BKM20]

Trapdoor Hash Functions
Previous Works:

* [DGIMMO19] TDH for index predicate & linear functions from
DDH/LWE/QR/DCR

* [BKMZ20] TDH for constant-degree polynomials from
DDH/LWE/QR/DCR

By leveraging the power of interaction,
can we handle a larger class of circuits?

Applications:
* Secure computation, rate-1 oblivious transfer,
private information retrieval etc. [DGIMMO19]
* Correlation intractable hash and NIZKs [BKM20]

Intermediate Result (1):

O(1)-round

nteractive TD

for TCY -

Tom DDH.

Intermediate Result (1):

O(1)-round Interactive TD
for TC? from DDH.

(TC": constant-depth threshold circuits.)

Intermediate Result (1):

O(1)-round Interactive TD
for TC? from DDH.

(TC": constant-depth threshold circuits.)

(Can be generalized to poly-round for P/poly circuits)

Correlation Intractable Hash (CIH)
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Correlation Intractable Hash (CIH)
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

A Family of Hash: {H,,(X)},

Correlation Intractable Hash (CIH)
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

A Family of Hash: {H,,(X)},
Key Generation: k < Gen(1%)

Correlation Intractable Hash (CIH)
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

* A Family of Hash: {H; (x)},
* Key Generation: k < Gen(1%)

Correlation Intractable for a Circuit Class F:

Correlation Intractable Hash (CIH)
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

* A Family of Hash: {H; (x)},
* Key Generation: k < Gen(1%)

Correlation Intractable for a Circuit Class F:

Vixed F €

Correlation Intractable Hash (CIH)
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

* A Family of Hash: {H; (x)},
* Key Generation: k < Gen(1%)

Correlation Intractable for a Circuit Class F:

®

Vixed F €

PPT. Adversary

Correlation Intractable Hash (CIH)
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

* A Family of Hash: {H; (x)},
* Key Generation: k < Gen(1%)

Correlation Intractable for a Circuit Class F:

Vixed F €

k < Gen(1%)
D

PPT. Adversary

Correlation Intractable Hash (CIH)
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

* A Family of Hash: {H; (x)},
* Key Generation: k < Gen(1%)

Correlation Intractable for a Circuit Class F:

Vixed F €

k « Gen(1Y)
% (
X

PPT. Adversary >

Correlation Intractable Hash (CIH)
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

* A Family of Hash: {H; (x)},
* Key Generation: k < Gen(1%)

Correlation Intractable for a Circuit Class F:

Vixed F €

k < Gen(1%)
“
és %[’)kr[Hk(}) = F(X)] < negl

X
PPT. Adversary >

Correlation Intractable Hash (CIH)

Previous Works:

Correlation Intractable Hash (CIH)

Previous Works:

e [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
 [BKMZ20] CIH from TDH for approximate constant-degree polynomials.

Correlation Intractable Hash (CIH)

Previous Works:

e [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
 [BKMZ20] CIH from TDH for approximate constant-degree polynomials.

Correlation Intractable Hash (CIH)

Previous Works:

e [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
 [BKMZ20] CIH from TDH for approximate constant-degree polynomials.

Applications:
* NIZKs [CCHLRRW19,PS519,BKM?20]

* SNARGs [CCHLRRW19,JKKZ20]
* Verifiable Delay Functions [LV20],
* PPAD-hardness [CHKPRR19,LV20,JKKZ20].

Correlation Intractable Hash (CIH)

Previous Works:

e [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
 [BKMZ20] CIH from TDH for approximate constant-degree polynomials.

Applications:
* NIZKs [CCHLRRW19,PS519,BKM?20]

* SNARGs [CCHLRRW19,JKKZ20]
* Verifiable Delay Functions [LV20],
* PPAD-hardness [CHKPRR19,LV20,JKKZ20].

Correlation Intractable Hash (CIH)

Previous Works:

e [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
 [BKMZ20] CIH from TDH for approximate constant-degree polynomials.

Applications:
* NIZKs [CCHLRRW19,PS519,BKM?20]

* SNARGs [CCHLRRW19,JKKZ20]
* Verifiable Delay Functions [LV20],
* PPAD-hardness [CHKPRR19,LV20,JKKZ20].

Correlation Intractable Hash (CIH)

Previous Works:

e [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
 [BKMZ20] CIH from TDH for approximate constant-degree polynomials.

Applications:
* NIZKs [CCHLRRW19,PS519,BKM?20]

* SNARGs [CCHLRRW19,JKKZ20]
* Verifiable Delay Functions [LV20],
* PPAD-hardness [CHKPRR19,LV20,JKKZ20].

Correlation Intractable Hash (CIH)

Previous Works:

e [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
 [BKMZ20] CIH from TDH for approximate constant-degree polynomials.

Applications:
* NIZKs [CCHLRRW19,PS519,BKM?20]

* SNARGs [CCHLRRW19,JKKZ20]
* Verifiable Delay Functions [LV20],
* PPAD-hardness [CHKPRR19,LV20,JKKZ20].

Correlation Intractable Hash (CIH)

Previous Works:

e [PS19,CCHLRRW19] CIH from LWE for polynomial size circuits
 [BKMZ20] CIH from TDH for approximate constant-degree polynomials.

Can we build CIH for a larger class of circuits from
assumptions other than LWE?

Applications:
* NIZKs [CCHLRRW19,PS519,BKM?20]

* SNARGs [CCHLRRW19,JKKZ20]
* Verifiable Delay Functions [LV20],
* PPAD-hardness [CHKPRR19,LV20,JKKZ20].

Intermediate Result (2):

Correlation Intractable Hash for TCY
from sub-exponential DDH.

Intermediate Result (2):

Correlation Intractable Hash for TCY
from sub-exponential DDH.

Assuming DDH is hard for sub-exponential time adversary, we
can also obtain CIH for O(loglog A)-depth threshold circuits.

Technical Detall

* Recap of Fiat-Shamir

* Main Challenges

* |TDH for TC® — CIH for TC®
* Construction of ITDH

Technical Detall

* Recap of Fiat-Shamir

* Main Challenges

* |TDH for TC® — CIH for TC®
* Construction of ITDH

Technical Detall

* Recap of Fiat-Shamir

* Main Challenges

* |TDH for TC® — CIH for TC®
* Construction of ITDH

Technical Detall

* Recap of Fiat-Shamir

* Main Challenges

* |TDH for TC® — CIH for TC®
* Construction of ITDH

Technical Detall

* Recap of Fiat-Shamir

Technical Detall

Flat-Shamir via CIH
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

% Y -protocol -

A xel W
P Vv
a

B < 10,1}

>

<€

Y

Flat-Shamir via CIH
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

’ Y -protocol -

x €L | /)
P Vv
(04

B < 10,1}

>

=

<€

Y

Flat-Shamir via CIH
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Y -protocol
X €L

04

B < 10,1}

>

Y

ﬂ
“

Vv

X €L

-
W
Y,

Flat-Shamir via CIH

[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKMZ20]

Y -protocol
X €L

04

B < 10,1}

>

Y

ﬂ
“

Vv

X €L

AR key k for CIH

-

|/

\V

Flat-Shamir via CIH
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Y -protocol - x €L -
xel W key k for CIH \WL
V V

a

Prepare

>

B < 10,1}

Y

Flat-Shamir via CIH
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Y -protocol - x €L -
xel W key k for CIH \WL
V V
z > Prepare «
B < {0,1}" p = Hy(a)
<
Y >

Flat-Shamir via CIH
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Z-protocol o x € L .
% xeL WA %/keykforCIH \W&
P Y P v
a
> # Prepare
g < {0,1}" f = Hy(a)
< Compute y
y >

Flat-Shamir via CIH
[CGH98, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20]

Z-protocol o x € L .
% xeL WA %/keykforCIH \W&
P Y P v
a
> # Prepare
g < {0,1}" f = Hy(a)
< Compute y
4 > &y >

Flat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,

PS19, BKM20]

X -protocol
X & L

®

Cheating
Prover

Q;

\\
.
-~

Cheating .
Prover

Flat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

éE X-protocol wi!; éE xél =
Cheating i l; V/ Cheating CIH key k \%V
Prover a g | Prover
< 'B*
] at y*
14 S 4 >

Special Soundness: A witness can be extracted from two accepting transcripts

(a*, By, Vo) (", B1,v1), if By # B1.

Flat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

éE X-protocol wi!; éE xél =
Cheating i l; V/ Cheating CIH key k \%V
Prover a g | Prover
< 'B*
] at y*
14 S 4 >

Special Soundness: A witness can be extracted from two accepting transcripts

(a*, By, Vo) (", B1,v1), if By # B1.

Flat-Shamir: Soundness [ccros, KrRrR17. CCRRIS, HL1S, CCHLRRWAO,
PS19, BKM20]

gg X -protocol ﬁﬂ gg x &L @
X €L CIH key k w

Cheating) V Cheating . Ty
Prover a Prover
> »
B*
Y ' >

Special Soundness: A witness can be extracted from two accepting transcripts
(", Bo,vo), (&, B1,v1), if By # PBi.
If x € L, for any a™, 3 unique B* such that (a*, B%,") can be accepted.

Flat-Shamir: Soundness [ccros, KrRrR17. CCRRIS, HL1S, CCHLRRWAO,
PS19, BKM20]

% X -protocol WT % X & L q;
X &L CIH key k w

Cheating) V Cheating . Ty
Prover a Prover
> »
B*
Y ' >

Special Soundness: A witness can be extracted from two accepting transcripts
(", Bo,vo), (&, B1,v1), if By # PBi.
If x € L, for any a™, 3 unique B* such that (a*, B%,") can be accepted.

*

a the unique B~

Flat-Shamir: Soundness [ccros, KrRrR17. CCRRIS, HL1S, CCHLRRWAO,
PS19, BKM20]

gg X -protocol ﬁﬂ gg x &L @
X €L CIH key k w

Cheating) V Cheating . Ty
Prover a Prover
> »
B*
Y ' >

Special Soundness: A witness can be extracted from two accepting transcripts
(", Bo,vo), (&, B1,v1), if By # PBi.

If x € L, for any a™, 3 unique B* such that (a*, B%,") can be accepted.
BAD: a* the unique B°

Flat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

X-protocol =™
Cheating V Cheating .
Prover a* Prover

> »

B*

< k k

)/* a,y

>

BAD: a* the unique B~

Flat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

YX-protocol =
és x &L |/ és N
Cheating V Cheating
Prover a” Prover
> m—
B*
< * *
" a,y
Y >
BAD: a* the unique £~

Verifier accepts = B* = CIH,(a*) = BAD(a™): Contradiction to Correlation Intractability

Flat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

X-protocol =™
X &L % ég

®

Cheating) V Cheating o
Prover a Prover
> »
B*
< *k *k
)/* a,y

Known constructions of CIH can only handle
efficiently computable BAD
BAD: a* the unique B~
Verifier accepts = B* = CIH,(a*) = BAD(a™): Contradiction to Correlation Intractability

Flat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,
PS19, BKM20]

% és x & L q
és ver WA CH key k W

Cheating V Cheating . Ty
Prover a* = Com(m™) Prover
> m—
ﬁ*
Y ' >

Flat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,

PS19, BKM?20]
Trapdoor X-protocol

A és X €L &
és cel Wb CH key k W

Cheating V Cheating . Ty
Prover a* = Com(m™) Prover
> m—
ﬁ*
Y ' >

Flat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,

PS19, BKM?20]
Trapdoor X-protocol

CRS 04 és x ¢ L -
és L CIH key k /-

Cheating V Cheating . Ty
Prover a” = Com(m") Prover
> m—
ﬁ*
Y ' >

Flat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,

PS19, BKM?20]
Trapdoor X-protocol

CRS CRS @ éz x €L o
és L CIH key k /-

Cheating V Cheating . Ty
Prover a” = Com(m") Prover
> m—
ﬁ*
Y ' >

Flat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,

PS19, BKM?20]
Trapdoor X-protocol trapdoor: td

CRS CRS
) B I T
CIH key k

Cheating V Cheating o
Prover a* = Com(m™) Prover
> »
ﬁ*
k
Y ’ >

Flat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,

PS19, BKM?20]
Trapdoor X-protocol trapdoor: td

378 [B
& XEL . ClH key k 4
eating e (m") V le;eatmg yrd ~ V
Prover ¢ = Lom(m rover
ove J
< 'B*
y* X a,y S

BAD:

Flat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,

PS19, BKM?20]
Trapdoor X-protocol trapdoor: td

378 [B
& XEL . ClH key k 4
eating e (m") V le;eatmg yrd ~ V
Prover ¢ = Lom(m rover
ove J
< 'B*
y* X a,y S

BAD: o~

Flat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,

PS19, BKM?20]
Trapdoor X-protocol trapdoor: td

378 [B
& XEL . ClH key k 4
eating e (m") V le;eatmg yrd ~ V
Prover ¢ = Lom(m rover
ove J
< 'B*
y* X a,y S

Com.Ext(td,-)
BAD: o~

Flat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,

PS19, BKM?20]
Trapdoor X-protocol trapdoor: td

378 [B
& XEL . ClH key k 4
eating e (m") V le;eatmg yrd ~ V
Prover ¢ = Lom(m rover
ove J
< 'B*
y* X a,y S

Com.Ext(td,-)
BAD: o~ m*

Flat-Shamir: Soundness [CGH98, KRR17, CCRR18, HL18, CCHLRRW19,

PS19, BKM?20]
Trapdoor X-protocol trapdoor: td

CRS CRS @
x & L i

Cheating V Cheating o
Prover a* = Com(m™) Prover
> »
ﬁ*
k
Y ’ >

N Com.Ext(td,-) N . *
BAD: ¢ m the unique bad

Flat-Shamir: Soundness [CGHI8, KRR17, CCRR18, HL18, CCHLRRW19,

PS19, BKM?20]
Trapdoor X-protocol trapdoor: td

CRS CRS ™
é; X & L % é;

Cheating V Cheating o
Prover a* = Com(m™) Prover
> m—
ﬁ*
Y >

Correlation Intractability needs to at least capture the Com.Ext(td,-) circuit

N Com.Ext(td,-) N . *
BAD: ¢ m the unique bad S

Towards Instantiation
from DDH: * Main Challenges
Main Challenges

Instantiate Fiat-Shamir from DDH

Instantiate Fiat-Shamir from DDH

Instantiate Trapdoor Commitment from DDH

Instantiate Fiat-Shamir from DDH

* [Instantiate Trapdoor Commitment from DDH

Commitment — ElGamal Encryption
Extraction —» ElGamal Decryption

Instantiate Fiat-Shamir from DDH

* [Instantiate Trapdoor Commitment from DDH

Commitment — ElGamal Encryption
Extraction —» ElGamal Decryption

Instantiate Fiat-Shamir from DDH

Instantiate Trapdoor Commitment from DDH

Commitment — ElGamal Encryption
Extraction —» ElGamal Decryption

If we have CIH for ElGamal Decryption circuit fromm DDH,
then we can hope to construct NIZKs from DDH.

Previous CIH from DDH [BKM20]

Previous CIH from DDH [BKM20]

H; (")
CIH for approximable relations
of O(1)-degree poly.

Previous CIH from DDH [BKM20]

) H; ()

CIH for approximable relations
of O(1)-degree poly.

Previous CIH from DDH [BKM20]

4)
]
< — —) Hk()
. > CIH for approximable relations

TDH for 0(1)-degree poly. of O(1)-degree poly.

Previous CIH from DDH [BKM20]

4)
]
< — E——) Hk()
. > CIH for approximable relations
TDH for 0(1)-degree poly. of O(1)-degree poly.

* [BKM20] used trapdoor commitment from LPN, where
Com. Extraction(td,-) € { approximate O(1)-degree poly. }

Previous CIH from DDH [BKM20]

4)
]
< — —) Hk()
. > CIH for approximable relations
TDH for 0(1)-degree poly. of O(1)-degree poly.

Approximating the ElGamal Decryption by
O(1)-degree poly is not known

* [BKM20] used trapdoor commitment from LPN, where
Com. Extraction(td,-) € { approximate O(1)-degree poly. }

What circuit class of CIH is sufficient to
Instantiate Fiat-Shamir from DDH?

What circuit class of CIH is sufficient to
Instantiate Fiat-Shamir from DDH?

How to build CIH for such a circuit class?

Our Approach

Our Approach

CIH for TC® suffices for
building NIZKs from DDH

Our Approach

CIH for TC® suffices for
building NIZKs from DDH

Our Approach

CIH for TC® suffices for
building NIZKs from DDH

Construct CIH for TC®

Our Approach

Construct CIH for TC®

0(1)-round ITDH for TC®

f(—
|]
CIH for TC? suffices for >
building NIZKs from DDH
<
]
_ -,

Our Approach

CIH for TC® suffices for
building NIZKs from DDH

Construct CIH for TC®

0(1)-round ITDH for TC®

("
<€
]
>
]
<]
_ >

Compute beyond 0(1)-degree poly
by leveraging interaction

Our Approach

Construct CIH for TC®

0(1)-round ITDH for TC®

f(O)
CIH for TC° suffices for = >
building NIZKs from DDH —)
<€
]
N -,

Compute beyond 0(1)-degree poly
by leveraging interaction

Our Approach

Construct CIH for TC®
0(1)-round ITDH for TC®

[.
T m CIH for TC®
CIH for TC? suffices for > .
building NIZKs from DDH q Hy (")
<]
]
. -,

Compute beyond 0(1)-degree poly
by leveraging interaction

Our Approach

Construct CIH for TC®

0(1)-round ITDH for TC®
4)

<€
- CIH for TC®
E—
n

" | mp Hy (")

<€

_ >

Compute beyond 0(1)-degree poly
by leveraging interaction

Interactive TDH = CIH ITDH for TC® — CIH for TC®

Recall: Interactive TDH

Recall: Interactive TDH

Sender

Recall: Interactive TDH

Sender Receiver

Recall: Interactive TDH

Sender

-

Receiver

«— F
(multi-bit output)

Recall: Interactive TDH

Sender

-

<€

Receiver

«— F
(multi-bit output)

Recall: Interactive TDH

Sender

-

<€

Receiver

«— F
(multi-bit output)

Recall: Interactive TDH

Sender

-

<€

Receiver

«— F
(multi-bit output)

Recall: Interactive TDH

Sender Recelver
- 4)
X — < - «— F
. (multi-bit output)
>
]
<

Recall: Interactive TDH

Sender Recelver
- 4)
X — < - «— F
. (multi-bit output)
>
]
<

Recall: Interactive TDH

Sender Recelver
- 4)
X — < - «— F
. (multi-bit output)
>
]
<

Recall: Interactive TDH

Sender Receiver

. 4)
% —> - <« F

. (multi-bit output)

encoding decoding

Recall: Interactive TDH

Sender Receiver
(e
X < «— F
. (multi-bit output)
>
N
<
B
\¢ >¢/
« Additive reconstruction: 8 D d = F(X)

encoding decoding

Recall: Interactive TDH

Sender Recelver
- 4)
X —> | < - <« F
. (multi-bit output)
>
 Laconic communication]
on sender side: <
<2 _ L .
* Additive reconstruction: e D d = F(X)

encoding decoding

Recall: Interactive TDH

Sender Receilver
- 4)
X —> < - «— F
_ o o (multi-bit output)
* Function Hiding: F is hiding. L S
 Laconic communication]
on sender side: <
<2 _ B .
* Additive reconstruction: e D d = F(X)

encoding decoding

CIH from Interactive TDH

Sender

X

—

[_—
=

>

/

QU €Y

Receiver

<« F

CIH from Interactive TDH

Sender

X

—

[_—

/

Receiver

<« F

CIH from Interactive TDH

Sender

xr —>

CIH key: k = [t_i «1{0,1}",

[_—

/

Receiver

<« F

|

CIH from Interactive TDH

Sender

xr —>

CIH key: k = [t_i «1{0,1}",

[_—

/

Receiver

<« F

J Guess

CIH from Interactive TDH

Sender

xr —>

CIH key: k = [t_i «1{0,1}",

[_—

/

Receiver

«<— F
J Guess

Guess

CIH from Interactive TDH

Sender

xr —>

CIH key: k = [t_i «1{0,1}",

[_—

/

Hy(X) =

<l

Receiver

«<— F
J Guess

Guess

Recall: Correlation Intractable for F

Recall: Correlation Intractable for F

Vixed F €

Recall: Correlation Intractable for F

Vixed F €

®

Recall: Correlation Intractable for F

Vixed F €

k « Gen(1%)

2

Recall: Correlation Intractable for F

Vixed F €

k « Gen(1%)

é‘ (
X
>

Recall: Correlation Intractable for F

Vixed F €

k « Gen(1%)

é;) 2) é‘f’)kr[Hk(;é) = F(X)] < negl

Proof of Correlation Intractability |BKMZ20]

Sender Receiver

X —> <«<— F

Hy(X) =

Proof of Correlation Intractability |BKMZ20]

Receiver

Sender ~
X —> <«<— F
J
Hi (%) = é

e D
<l
Uy

F(x) = B

Proof of Correlation Intractability |BKMZ20]

Sender ~ Recelver
X —> <«<— F
J
H (X)) = é ® u
Equal = v
F(x)|= e b d

Proof of Correlation Intractability |BKMZ20]

Sender Receiver

X —> <«<— F

é? Hy (x)
Equal =
F(x)|=

Equal!

Proof of Correlation Intractability |BKMZ20]

Sender N Receilver
X —> <«<— F
J
Hy (X)|=
Equal = Equal!
F(x)|=
d IS “sparse”,

Since it only depends on .

Proof of Correlation Intractability |BKMZ20]

Sender N Receiver
X —> «— F
J
Hy (%)= 8 D| u
Equal = - Equal!
F(X)|= é D d
d IS “sparse”, oo
Pr [Elx: d = u] = negl

Since it only depends on B (0,1}

Proof of Correlation Intractability [This work]

Sender '
- N Recelver

X —>| < «— F

<€

Proof of Correlation Intractability [This work]

Sender Receiver
- ~ eceive
I —| < N «— F
Guess 8
N
<

Proof of Correlation Intractability [This work]

Sender

xr —>

-

<€

<€

N

Recelver

<« F
Guess 8

Guess 8

Proof of Correlation Intractability [This work]

Recelver

<« F
Guess 8

Guess 8

Sender e ~
I —>| <]
R
<
\\l, l, J
F(x) = é b d

Additive reconstruction correctness
only holds with Pr{Guessing Correct]

Proof of Correlation Intractability [This work]

Sender

xr —>

If correctness only holds
with small probability,
how to prove CI?

-

<€

N

J

v

Recelver

<« F
Guess 8

Guess 8

F(x) =

¢ D

d

Additive reconstruction correctness
only holds with Pr{Guessing Correct]

An Oversimplified Case: Guessing is independent of X

Equal

F(F)
Hi (%)

oy Ny

o D

QU

<l

Equal!

An Oversimplified Case: Guessing is independent of X

B

Pr[Guessing [JJ] Correct]= 27°®,

Equal

F(x)
Hy (%)

e

e

D
D

d

<l

Equal!

An Oversimplified Case: Guessing is independent of X

B

Pr[Guessing [JJ] Correct]= 27°®,

F(X)|= 5 i
Equal (_J,c) - ® — d Equal!
Hy (X)|= ¢ ®| u

Cpr [3md =] 2 270@
u<{0,1}n

(Not too small)

An Oversimplified Case: Guessing is independent of X

B

Pr[Guessing [JJ] Correct]= 27°®,

F(X)|= é D d
Equal . — Equal!
Hy.(X)|= é d| u
Sparsity of d:
Pr [3%:d =] < 272%™ CPr [3wd=1]>270@
u<{0,11" u<{0,11n
(Very small!) (Not too small)

An Oversimplified Case: Guessing is independent of X

B

Pr[Guessing [JJ] Correct]= 27°®,

F(X)|= é D d
Equal . — Equal!
Hy.(X)|= é d| u
Sparsity of d:
Pr [3%:d =] < 272%™ CPr [3wd=1]>270@
u<{0,11" u<{0,11n
(Very small!) (Not too small)

If n > A, contradiction!

An Oversimplified Case: Guessing is independent of X

B

Pr[Guessing [JJ] Correct]= 27°®,

F(X)|= é D d
Equal . — Equal!
Hy.(X)|= é d| u
Sparsity of d:
Pr [3%:d =] < 272%™ CPr [3wd=1]>270@
u<{0,11" K u<{0,11n
(Very small!) (Not too small)

If n > A, contradiction!

s Guessing independent of x7?

s Guessing independent of x?

k < Gen(1%)

=
é‘ 2) é‘1’3)!(1*[Hk(3_|5) = F(x)] < negl

s Guessing independent of x?

ITDH

" oo < F
] Guess.
N

<€

CIH key: k = [Ti,

< Y Gu.e"ss .

k < Gen(1%)

=
é‘ 2) é‘1’3)!(1*[Hk(3_|5) = F(x)] < negl

s Guessing independent of x?

ITDH
4 N F
[. cuess BB
CIH key: k = u, _
< Y Guess .
k « Gen(1Y) é‘ chooses X depending on k,

é‘ < which depends on the guessing|l
x
>

s Guessing independent of x?

ITDH
4 N F
[. cuess BB
CIH key: k = u, _
< Y Guess .
k « Gen(1Y) é‘ chooses X depending on k,

é‘ < which depends on the guessing|l
X > | Function Hiding: also hidesll

Function Hiding in Detall

Sender Recelver

<« F

ith

recelvers I

Messages <€

Function Hiding in Detall

Sender Recelver

<« F

ith

receivers | N — KGen(F,st;)

Messages <€

Function Hiding in Detall

Sender Recelver

<« F

. (W)
ecever's | S KGen(F,st;)

Messages <€

ith

Function Hiding in Detall

Sender Recelver

<« F

- (M)
ecevers | M - KGen(Fst) RS

Messages <€

ith

Function Hiding in Detall

Sender Recelver

<« F

receiver's B < KGen(F,st;) A~ c

Messages <€

ith

* Function Hiding: V F, st;, KGen(F,st;) =, Uniformly Random String

Leverage Function Hiding

Sender Receiver

;5_)/ J— \(—F

Leverage Function Hiding

Sender

X

—

-

o

M
—
<€

<€

~

/

Receiver

<« F

Leverage Function Hiding

Sender

X

—

/ M —
<€

/13—

o

~

/

Receiver

<« F

Leverage Function Hiding

Sender Recelver
A
X _)/ 1(— \ «— F
Guess
. N
<€

Leverage Function Hiding

Sender Receiver
A
X _)/ 1(— \ «— F
Guess
A2 I
<€
Guess 8

Leverage Function Hiding

Sender

X _)/ ’11(—

/12—

o

~

/

Receiver

«— F
Guess

Guess 8

Guess M correctly with Pr. 27 — 2% (not too small)

Leverage Function Hiding

Sender Recelver
A
¥ —> / 1(— \ «— F
Guess
A2]
<
_ Y Guess 8
* Guess Ml correctly with Pr. 27% — 2% (not too small)

T

Uniform Random
Guessing

Leverage Function Hiding

Sender Recelver
A
¥ —> / 1(— \ «— F
Guess
A2]
<
_ Y Guess 8
* Guess Ml correctly with Pr. 27% — 2% (not too small)
Tt =l

Uniform Random | | Sub-exponential
Guessing Function Hiding

Moditied proof of Correlation Intractability

Moditied proof of Correlation Intractability

* Extend to O(1) rounds (or O(log log A)-rounds):

Moditied proof of Correlation Intractability

* Extend to O(1) rounds (or O(log log A)-rounds):
)'1 <).2 < 2,3 e < AL

Moditied proof of Correlation Intractability

* Extend to O(1) rounds (or O(log log A)-rounds):
/11 < AZ <),3 e < A’L

From Guessing Correctness:

Pr [355: d = ﬁ] > 2—0(A1+4z..+4y)
u<{0,1}n —

(Not too small)

Moditied proof of Correlation Intractability

* Extend to O(1) rounds (or O(log log A)-rounds):
/11 < AZ <),3 e < AL

Sparsity of d : From Guessing Correctness:
Pr [3x:d =] < 279 Pr[3x:d = u] = 270Ga+Az.+4)
U{0,1}" u—{0,1}"
(Very small!) (Not too small)

Moditied proof of Correlation Intractability

* Extend to O(1) rounds (or O(log log A)-rounds):
/11 < AZ <),3 e < AL

Sparsity of d : From Guessing Correctness:
Pr [3x:d =] < 279 Pr[3x:d = u] = 270Ga+Az.+4)
U{0,1}" u—{0,1}"
(Very small!) (Not too small)

If n > A, Correlation Intractable!

Moditied proof of Correlation Intractability

* Extend to O(1) rounds (or O(log log A)-rounds):

< A

/11<12<),3

Sparsity of d :

Pr
u<{0,1"

[EIJ_C): d = t_i] < 270Mm)

(Very small!)

<

From Guessing Correctness:

Pr
u<{0,1}n

[3;5: d = ﬁ] > 2—0(A1+2z..+4y)

(Not too small)

If n > A, Correlation Intractable!

Interactive TDH for TCP

 Construction of ITDH

Background: Threshold Gates and TC®

Background: Threshold Gates and TC®

* Threshold Gate (x € {0,1}™):

1, weight(x) >t
Th* (¥) = {

0, Otherwise

Background: Threshold Gates and TC®

* Threshold Gate (x € {0,1}™):

1, weight(x) >t
Th® (%) =

0, Otherwise

« TCY: constant depth circuits consists of {NOT, Threshold} gates

Background: Threshold Gates and TC®

* Threshold Gate (x € {0,1}™):

1, weight(x) >t
Th® (%) =

0, Otherwise

« TCY: constant depth circuits consists of {NOT, Threshold} gates

* For simplicity, let's only consider the threshold gates.

ITDH for TCY: Layer-by-Layer Computation

ITDH for TCY: Layer-by-Layer Computation

x —>

-~

~

G

1st Layer of
Threshold Gates of F

ITDH for TCY: Layer-by-Layer Computation

x —>

-~

-

ITDH for 15t layer of
Threshold Gates

~

)

G

1st Layer of
Threshold Gates of F

ITDH for TCY: Layer-by-Layer Computation

x —> N «— 1st Layer of

Threshold Gates of F
ITDH for 1t layer of
Threshold Gates

- /)
4 N

ITDH for TCY: Layer-by-Layer Computation

x —> N «— 1st Layer of

Threshold Gates of F
ITDH for 1t layer of
Threshold Gates

- /

4)

ITDH for 29 layer of
Threshold Gates

o /

ITDH for TCY: Layer-by-Layer Computation

x —>

-~

ITDH for 1t layer of
Threshold Gates

~

)

-
-

-

ITDH for 2" layer of
Threshold Gates

~

¢ 1st Layer of
Threshold Gates of F

2"d Layer of
Threshold Gates of F

ITDH for TCY: Layer-by-Layer Computation

x —>

-~

ITDH for 1t layer of
Threshold Gates

~

)

-
-

-

ITDH for 2" layer of
Threshold Gates

~

¢ 1st Layer of
Threshold Gates of F

2"d Layer of
Threshold Gates of F

ITDH for TCY: Layer-by-Layer Computation

x —>

-~

-

ITDH for 1t layer of
Threshold Gates

~

)

-

-

ITDH for 2" layer of
Threshold Gates

~

¢ 1st Layer of
Threshold Gates of F

_)C"l’

2"d Layer of
Threshold Gates of F

ITDH for TCY: Layer-by-Layer Computation

x —>

-~

-

ITDH for 1t layer of
Threshold Gates

~

)

-

-

ITDH for 2" layer of
Threshold Gates

~

1st Layer of
Threshold Gates of F

G

Qutput of 1t layer of

¢ Dd= Threshold Gates

—_ c_l)
d

2" Layer of
Threshold Gates of F

ITDH for TCY: Layer-by-Layer Computation

x —>

-~

-

ITDH for 1t layer of
Threshold Gates

~

)

-

-

ITDH for 2" layer of
Threshold Gates

~

1st Layer of
Threshold Gates of F

e

. S st
EDd= Qutput of 15t layer of

Threshold Gates

ﬁ d
d
2" Layer of
Threshold Gates of F

ITDH for TCY: Layer-by-Layer Computation

x —>

-~

-

ITDH for 15t layer
Threshold Gates

~

-

)
~

G

1st Layer of
Threshold Gates

Uy

ITDH for TCY: Layer-by-Layer Computation

x —>

-~

-

ITDH for 15t layer
Threshold Gates

~

-

-

ITDH for 2" layer Xor-
then-Threshold Gates

)
~

/

¢ 1st Layer of
Threshold Gates

-

_)d

¢ Xor-then-Threshold
Gates for 2" layer

ITDH for TCY: Layer-by-Layer Computation

x —>

-~

-

ITDH for 15t layer
Threshold Gates

~

-

-

ITDH for 2" layer Xor-
then-Threshold Gates

)
~

/

¢ 1st Layer of
Threshold Gates

-

_)d

¢ Xor-then-Threshold
Gates for 2" layer

Xor-then-Threshold Gate

Xor-then-Threshold = Threshold Gate - XOR

Xor-then-Threshold Gate

Xor-then-Threshold = Threshold Gate - XOR

T 1, weight(X ®y) >t
Thy (%) = <

_ 0, Otherwise

ITDH for An Xor-then-Threshold Gate
From TDH for Linear functions

ITDH for An Xor-then-Threshold Gate
From TDH for Linear functions

* An overview

ITDH for An Xor-then-Threshold Gate
From TDH for Linear functions

* An overview

X —> (J <«— weight(- B y)

ITDH for An Xor-then-Threshold Gate
From TDH for Linear functions

* An overview

X —> () <— weight(- D y)
TDH for weight(x & y) J

_

ITDH for An Xor-then-Threshold Gate
From TDH for Linear functions

* An overview

TDH for weight(x & y)

X —> (J <«— weight(- B y)

4)

- J

ITDH for An Xor-then-Threshold Gate
From TDH for Linear functions

* An overview

X —> () <— weight(- D y)
TDH for weight(x & y) J

4)

TDH for > ¢t

- J

weight(x @) as a Linear Function of x

weight(x @) as a Linear Function of x

weight(x @ y) = z x; D y;

i

weight(x @) as a Linear Function of x

weight(x @ y) = z x; D y;

:z(l—xi)')’i+xi’(1_3’i)

weight(x @) as a Linear Function of x

weight(x @ y) = z x; D y;

i

= > (A=x)-yi+x-(1-y) mod(n+1)

weight(X @ y) as a Linear Function of x

weight(?c’ D 5}) — z X; D Vi We_ extend TD_H (from DDH)
_ to linear functions over Z,,,1

= > (A=x)-yi+x-(1-y) mod(n+1)

weight(X @ y) as a Linear Function of x

weight(i’ D 5}) — z X; D Vi We_ extend TD_H (from DDH)
_ to linear functions over Z,,,1

= > (A=x)-yi+x-(1-y) mod(n+1)

* Use TDH for Linear Functions over Z,,;1

weight(X @ y) as a Linear Function of x

weight(i’ an j}) — z x; D y; We extend TDH (from DDH)

to linear functions over Z,,,1

= > (A=x)-yi+x-(1-y) mod(n+1)

Use TDH for Linear Functions over Z,,41

X —>

-

N\ «<— weight(- B y)

weight(x @) as a Linear Function of x

weight(i’ an j}) — z x; D y; We extend TDH (from DDH)

to linear functions over Z,,,1

= > (A=x)-yi+x-(1-y) mod(n+1)

Use TDH for Linear Functions over Z,,41

X —>

-

\ . . —_
TDH for linear functions | < weight(- © y)

over Z,.1

weight(x @) as a Linear Function of x

weight(i’ an j}) — z x; D y; We extend TDH (from DDH)

to linear functions over Z,,,1

= > (A=x)-yi+x-(1-y) mod(n+1)

* Use TDH for Linear Functions over Z,,;1

X —>

e €&—

-

2 (. (D
TDH for linear functions | < Vei8htC ©¥)

over Z, .1 —> d

weight(X @ y) as a Linear Function of x

weight(i’ an 5}) — z x; D y; We extend TDH (from DDH)

, to linear functions over Z,,,1
l

= > (A=x)-yi+x-(1-y) mod(n+1)

l

* Use TDH for Linear Functions over Z,,;1

X —>

e €&—

-

_

) - . =
TDH for linear functions | < VeightC ©¥)

over Z,.1)— d

How do we use TDH to compute (e + d) mod (n +1) =" ¢ ? ‘

Comparison as a Linear Function

Comparison as a Linear Function

« A simpler case: equality check e =7 d

Comparison as a Linear Function

« A simpler case: equality check e =7 d

e,d € 10,1, ...,n]: a poly range!

Comparison as a Linear Function

« A simpler case: equality check e =7 d

e,d € 10,1, ...,n]: a poly range!

0o 1 - n
e->1,=|0|0|1|0]0]|0O

d-1;,=|0|0|0|21]|0]0

Comparison as a Linear Function

« A simpler case: equality check e =7 d

e,d € 10,1, ...,n]: a poly range!

e > 1, =

d—)ld:

0

1

n

0

0

0

0

(e =’ d) — <1811d>

Comparison as a Linear Function

Comparison as a Linear Function

* Comparison: (e + d) mod (n +1) >’ ¢

Comparison as a Linear Function
* Comparison: (e + d) mod (n +1) >’ ¢

o3Fj>t:(e+d)mod(n+1) =

Comparison as a Linear Function

* Comparison: (e + d) mod (n +1) >’ ¢

o3j>t:

(e+d)mod(n+1)=j

Comparison as a Linear Function

* Comparison: (e + d) mod (n +1) >’ ¢

o3Fj>tdle+d)mod(n+1) =

Equality Check! e=(—d)mod(n+1)

Comparison as a Linear Function

* Comparison: (e + d) mod (n +1) >’ ¢

o3Fj>tdle+d)mod(n+1) =

Equality Check! e=(—d)mod(n+1)

= < 16'2 L(j—a) mod (n+1) == 1
I

ITDH for An Xor-then-Threshold Gate:
Putting Things Together

X —>

-

_

<€

<«— weight(- @ y)

ITDH for An Xor-then-Threshold Gate:
Putting Things Together

X —>

€ €«<—

-

_

<€

<«— weight(- @ y)

—>

ITDH for An Xor-then-Threshold Gate:

Putting Things Together

X —>

€ €«<—

-

_

<€

~

-

<«— weight(- @ y)

—> d

ITDH for An Xor-then-Threshold Gate:

Putting Things Together

X —>

€ €«<—

l, —>

4)
o J
4)

<«— weight(- @ y)

—> d

< Z 1(j—d) mod (n+1) >
j>t

ITDH for An Xor-then-Threshold Gate:

Putting Things Together

X —>

€ €«<—

l, —>

-

~

<«— weight(- @ y)

—> d

< Z 1(j—d) mod (n+1) >
j>t

ITDH for An Xor-then-Threshold Gate:

Putting Things Together

X —>

€ €«<—

l, —>

-

"\ «<— weight(: B ¥)

> —> d

< Z 1(j—d) mod (n+1) >
j>t

J

!

d' = weight(x @y) =’ ¢

ITDH for An Xor-then-Threshold Gate:
Putting Things Together

Nonlinear

—

—

—

Intermediate
Processing by Sender l,

s ~N
T m

_),

s ~N

-

D

_ 1/
e’ b

<«— weight(- B y)

—l d

.
™)

1(j—d) mod (n+1)
j>t

Intermediate

Processing by Receiver

d' = weight(x @y) =’ ¢

Summary of Results

* NIZKs from sub-exponential DDH:

Zero-Knowledge Soundness

Statistical Non-adaptive Random

Computational Adaptive Random

* 0(1)-round Interactive Trapdoor Hashing Protocol for TC®

* Correlation Intractable Hash for TCY.

* Statistical Zap arguments from sub-exponential DDH.

Open Questions

* NIZKs from polynomial-hard DDH?
* NIZKs from public key encryption?
* Correlation intractable hash for P/poly from DDH?

Thank you!

Q& A

