SNARGs Under LWE via Propositional Proofs

Zhengzhong Jin Yael Tauman Kalai
MIT \rightarrow Northeastern
Microsoft
Research and MIT
Alex Lombardi Vinod Vaikuntanathan
Princeton
MIT

Succinct Non-Interactive Arguments (SNARGs)

CRS

CRS

Succinct Non-Interactive Arguments (SNARGs)

CRS

$$
" x \in L "
$$

Succinct Non-Interactive Arguments (SNARGs)

CRS

CRS

$$
\text { " } x \in L \text { " }
$$

Succinct Non-Interactive Arguments (SNARGs)

CRS

$$
" x \in L "
$$

$$
C(x, w)
$$

CRS

Succinct Non-Interactive Arguments (SNARGs)

CRS

$$
" x \in L "
$$

$$
\ll|w|
$$

CRS

Succinct Non-Interactive Arguments (SNARGs)

CRS

$$
C(x, w)
$$

$$
" x \in L "
$$

$\ll|w|$

CRS

- Completeness: $\forall x \in L$, the honestly generated proof is accepted.

Succinct Non-Interactive Arguments (SNARGs)

CRS

$$
" x \in L "
$$

$$
\ll|w|
$$

Poly-time adversary

CRS

- Completeness: $\forall x \in L$, the honestly generated proof is accepted.
- Soundness: for any $x \notin L$, and any efficient adversary, the cheating proof should be rejected.

Can we build SNARGs for NP?

Can we build SNARGs for NP?

Micali'00, IKO’07, GKR'08, IKOS'09, Groth'10, SBW'11, SMBW'12, Lipmaa'12, CMT'12, DFH'12, SVPBBW'12, TRMP'12, GGPR'13, BCIOP'13, BCCT'13, Thaler'13, BCGTV'13, PHGR'13, BSCGT'13, BCGGMTV'14, BCCGP'16, Groth'16, GMO'16, GLRT'17, AHIV'17, BSBCGGHPRST'17, WJBSTWW'17, BBBPWM'18, BCGMMW'18, BSBHR'18, WTSTW'18, WZCPS'18, GMNO'18, FKL'18, BBCGI'19, BBHR'19, BCRSVW'19, BSCRSVW'19, CFQ19, GWC'19, KPV'19, KPY'19, MBKM'19, Nitulescu'19, XZZPS'19, Gabizon'19, BBS'20, BSCIKS'20, BFHVXZ'20, COS'20, CHMMVW'20, KZ'20, KPPS'20, SGKS'20, SL'20, Setty'20, ZXZS'20, BMMTV'21, GLSTW'21, GMN21, GPR'21, Sta'21, ZLWZSXZ'21, Bay'22, CBBZ'22, XZCZZJBS'22, XZS'22, ...

Can we build SNARGs for NP?

Random Oracle Model, or Knowledge-type Assumptions

SNARGs for NP from well-studied assumptions?

SNARGs for NP from well-studied assumptions?

[Gentry-Wichs'12] Impossibility from falsifiable assumptions

(Caveat: require adaptive soundness and black-box soundness reduction)

SNARGs for NP from well-studied assumptions?

[Gentry-Wichs'12] Impossibility from falsifiable assumptions

For $L \in N P$ with "hardness" T (L needs time T to decide), the proof size is unlikely $\ll \log T$.
(Caveat: require adaptive soundness and black-box soundness reduction)

SNARGs for NP from well-studied assumptions?

[Gentry-Wichs'12] Impossibility from falsifiable assumptions

For $L \in N P$ with "hardness" T (L needs time T to decide), the proof size is unlikely $\ll \log T$.

For this Talk: A SNARG is "truly succinct" if proof size $\ll \log T$. (SNARGs for NP must be truly succinct.)
(Caveat: require adaptive soundness and black-box soundness reduction)

SNARGs for NP from well-studied assumptions?

[Gentry-Wichs'12] Impossibility from falsifiable assumptions

For $L \in N P$ with "hardness" T (L needs time T to decide) the proof size is unlikely $\ll \log T$.

Circumvent?
For this Talk: A SNARG is "truly succinct" if proof size << $\log T$. (SNARGs for NP must be truly succinct.)
(Caveat: require adaptive soundness and black-box soundness reduction)

Prior Works Circumvent Gentry-Wichs

Prior Works Circumvent Gentry-Wichs

Not "Truly Succinct"

- Batch-NP [BHK17, CJJ21]
- P [KRR14, CJJ21, KVZ21]
- Bounded-space Non-
deterministic comp. [KVZ21]
- Monotone policy Batch-NP [BBKLP23]

Assumption: standard (LWE, DDH, ...)

Prior Works Circumvent Gentry-Wichs

Not "Truly Succinct"

- Batch-NP [BHK17, CJJ21]
- P [KRR14, CJJ21, KVZ21]
- Bounded-space Nondeterministic comp. [KVZ21]
- Monotone policy Batch-NP [BBKLP23]

Assumption: standard (LWE, DDH, ...)

"Truly succinct"

- NP [SW14, WW24]
- Languages that have a "mathematical proof of non-membership" [JJ22]

Assumption: require indistinguishability obfuscation (iO)

Prior Works Circumvent Gentry-Wichs

Not "Truly Succinct"

- Batch-NP [BHK17, CJJ21]
- P [KRR14, CJJ21, KVZ21]
- Bounded-space Nondeterministic comp. [KVZ21]
- Monotone policy Batch-NP [BBKLP23]

Assumption: standard (LWE, DDH, ...)

"Truly succinct"

- NP [SW14, WW24]
- Languages that have a "mathematical proof of non-membership" [JJ22]

Assumption: require indistinguishability obfuscation (iO)

We don't know any truly succinct SNARGs from standard assumptions!

Can we build truly succinct SNARGs from standard assumptions?

(Recall: truly succinct means proof size $\ll \log T$ for any NP languages that require time T to decide.)

Can we build truly succinct SNARGs from standard assumptions?

(Recall: truly succinct means proof size << log T for any NP languages that require time T to decide.)

(One step closer to SNARGs for NP from standard assumptions)

Our Results (I)

SNARGs from learning with errors (LWE) for NP languages that have a poly-size propositional proof of non-membership, with uniformly random CRS, where

- Proof size $=\operatorname{poly}(\lambda)$
- CRS size $=$ poly(prop. proof length, λ)

Construction doesn't need to use the propositional proof.

Our Results (I)

SNARGs from learning with errors (LWE) for NP languages that have a poly-size propositional proof of non-membership, with uniformly random CRS, where

- Proof size $=\operatorname{poly}(\lambda)$
- \quad CRS size $=$ poly (prop. proof length, λ)

Construction doesn't need to use the propositional proof.

Propositional Logic (Extended Frege)

Frege

Propositional Logic (Extended Frege)

(Example: a non-membership proof of x)
θ_{1}

Frege

Hilbert
θ_{2}

Propositional Logic (Extended Frege)

(Example: a non-membership proof of x)

Frege

Hilbert

Propositional Logic (Extended Frege)

(Example: a non-membership proof of x)
θ_{1}

Frege

Hilbert
θ_{2}

Propositional Logic (Extended Frege)

(Example: a non-membership proof of x)
θ_{1}

Frege

Hilbert

θ_{T}

Propositional Logic (Extended Frege)

(Example: a non-membership proof of x)
θ_{1}

Frege

Hilbert
θ_{2}

Propositional Logic (Extended Frege)

(Example: a non-membership proof of x)
θ_{1}

Frege

Hilbert
θ_{2}

θ_{T}

Propositional Logic (Extended Frege)

(Example: a non-membership proof of x)
θ_{1}

Frege

Hilbert
θ_{2}

Propositional Logic (Extended Frege)

(Example: a non-membership proof of x)
θ_{1}

Frege

Hilbert
θ_{2}

Propositional Logic (Extended Frege)

(Example: a non-membership proof of x)
θ_{1}

Frege

Hilbert

Propositional Logic (Extended Frege)

(Example: a non-membership proof of x)
θ_{1}

Frege

Hilbert
θ_{2}

Propositional Logic (Extended Frege)

(Example: a non-membership proof of x)
θ_{1}

Frege

Hilbert
θ_{2}

Propositional Logic (Extended Frege)

(Example: a non-membership proof of x)
θ_{1}

Frege

Hilbert
θ_{2}

Propositional Logic (Extended Frege)

(Example: a non-membership proof of x)
θ_{1}
θ_{2}

Frege

Hilbert

Recall: Our Results (I)

SNARGs from learning with errors (LWE) for NP languages that have a poly-size propositional proof of non-membership, where

- Proof size $=\operatorname{poly}(\lambda)$
- CRS size $=$ poly (prop. proof length, λ)

Recall: Our Results (I)

SNARGs from learning with errors (LWE) for NP languages that have a poly-size propositional proof of non-membership, where

- Proof size $=\operatorname{poly}(\lambda)$
- \quad CRS size $=$ poly $($ prop. proof length,$\lambda)$

Context: Duality between Logic and Computation

Context: Duality between Logic and Computation

Computation

Context: Duality between Logic and Computation

Logic

Computation

Context: Duality between Logic and Computation

Logic

Computation

Formulas

Context: Duality between Logic and Computation

Logic
Frege

Computation

Formulas

Context: Duality between Logic and Computation

Logic

Frege

Computation

Formulas
Circuits

Context: Duality between Logic and Computation

Logic
Frege
Extended Frege

Computation

Formulas
Circuits

Context: Duality between Logic and Computation

Logic
Frege
Extended Frege

Computation

Formulas
Circuits
Poly-size Circuits

Context: Duality between Logic and Computation

Logic
Frege

Extended Frege

Poly-size Extended Frege

Computation

Formulas
Circuits
Poly-size Circuits

Context: Duality between Logic and Computation

Logic
Frege

Extended Frege

Poly-size Extended Frege

Computation

Formulas
Circuits
Poly-size Circuits

Poly-time Turing Machines

Context: Duality between Logic and Computation

Logic
Frege
Extended Frege
Poly-size Extended Frege

Cook's Theory PV [1975]

Computation

Formulas
Circuits
Poly-size Circuits

Poly-time Turing Machines

Context: Duality between Logic and Computation

Logic
Frege
Extended Frege
Poly-size Extended Frege

Cook's Theory PV [1975]

Context: Duality between Logic and Computation

Logic
Frege

Extended Frege

Poly-size Extended Frege

Cook's Theory PV [1975]

Context: Duality between Logic and Computation

Context: Duality between Logic and Computation

Corollary (via Cook's Theory PV)

SNARGs from LWE for decisional Diffie-Hellman language
$L=\left\{\left(g, g^{a}, g^{b}, g^{a b}\right)\right\}$ over n-bits standard group.

- Proof size $=\operatorname{poly}(\lambda)$, independent of n !
- CRS size $=\operatorname{poly}(\lambda, n)$

Corollary (via Cook's Theory PV)

SNARGs from LWE for decisional Diffie-Hellman language

$$
L=\left\{\left(g, g^{a}, g^{b}, g^{a b}\right)\right\} \text { over } n \text {-bits standard group. }
$$

- Proof size $=\operatorname{poly}(\lambda)$, independent of n !
- CRS size $=\operatorname{poly}(\lambda, n)$

Fully Succinct: L requires $2^{\Omega\left(n^{1 / 3}\right)}$ time to decide, but SNARG proof size << n.

Our Results (II)

SNARGs from T-hardness of (LWE) for NP languages that have a propositional proof of non-membership of space S and (possibly superpoly) length T, where

- \mid Proof $\mid=\operatorname{poly}(\log T, \lambda)$
- $\quad|\mathrm{CRS}|=\operatorname{poly}(S, \log T, \lambda)$

Our Results (II)

SNARGs from T-hardness of (LWE) for NP languages that have a propositional proof of non-membership of space S and (possibly superpoly) length T, where

- $\quad \mid$ Proof $\mid=\operatorname{poly}(\log T, \lambda)$
- $\quad|C R S|=\operatorname{poly}(S, \log T, \lambda)$
"Dual" of SNARGs for bounded space nondeterministic computation $\operatorname{NTISP}(S, T)$
(Proof and CRS size $=\operatorname{poly}(S, \log T)$)

Main Challenge

Recall: Indistinguishability Obfuscation (iO)

```
1 function main() {
```

1 function main() {
2 console.log('hello, world');
2 console.log('hello, world');
3 }
3 }
4 main()

```
4 main()
```

function _0x19e6(_0x4d301f,_0xcaab53) \{var _0x3a4e72=_0x3a4e(); return _0x19e6=function($0 \times 19 \mathrm{e} 691,-0 \times 5809 \mathrm{f} 0$) 0x16ee0b=_0x3a4e72[_0x19e691] ; return
0x16ee0b; \}, 0x19e6 _0x4d301f,_0xcaab53); \}function _0x3a4e()\{var _0x3f0a9d= [${ }^{\prime}{ }^{\prime}{ }^{\prime}{ }^{\prime} 199381 N C G r S a ', ' 2328491 t A i N S g ', ' 18 m V q y q S ', ' 4 c V Q T s k ', ~ ' 6 P u G z w R ', ~ 107410$ 32WsiTV0', 104321yYIIVM','370911DTLqdw','10uRQffV','2024504eEkwnt', '114d0c0h j' 'hello, \x20world', '2634710Iatl0d']; 0x3a4e=function() \{return _0x3f0a9d;\};return 0x3a4e();\}(function(_0x3d9e47, 0x360e03)\{var -0x3afd0b=_0x19e6, 0×2928 3=_0x3d9e47(), parseInt (0x3a_0b(0x15a))/0x1*(-parseInt (0x3afd0b(0x158))/0x2)+parseInt (_0x3afd0b(0x15b))/0x3*(-parseInt (0x3afd0b(0x158))/0x4) (parseInt (0x3afdeb(0x152))/0x5 parseInt parselnt - $0 x 3 a \operatorname{lox}(0 x 156)$)/0x9) + parseInt (0×3 afdob(0x156))/0x9) (parseInt (-0x3afdob(0x155)))/0xb)
(- $0 \times 33 c c 3 a===0 \times 360 \mathrm{e} 03)$ break;else 0x290)) function main

Recall: Indistinguishability Obfuscation (iO)

- Preserve Functionality: $i O(C)$ preserves the functionality of C

Recall: Indistinguishability Obfuscation (iO)

- Preserve Functionality: $i O(C)$ preserves the functionality of C
- Indistinguishability Security: for any C_{0}, C_{1} that compute the same function,

$$
i O\left(C_{0}\right) \approx_{c} i O\left(C_{1}\right)
$$

Starting Point: SW-SNARGs from iO

CRS

$$
\widetilde{P K}=i O\left(\begin{array}{c}
P K(x, w): \\
\text { if } C(x, w)=1: \\
\text { output } P R F_{k}(x)
\end{array}\right) \quad i O\left[\begin{array}{c}
V K(x, \sigma): \\
\sigma=? P R F_{k}(x)
\end{array}\right)=\widetilde{V K}
$$

Starting Point: SW-SNARGs from iO

Starting Point: SW-SNARGs from iO

Starting Point: SW-SNARGs from iO

Intuition for Soundness: $\forall x^{*} \notin L, \widetilde{P K}$ never outputs $P R F_{k}\left(x^{*}\right)$ $\Rightarrow i O$ hides $P R F_{k}\left(x^{*}\right)$

Starting Point: SW-SNARGs from iO

CRS

Can we instantiate this template from LWE?

Intuition for Soundness: $\forall x^{*} \notin L, \widetilde{P K}$ never outputs $P R F_{k}\left(x^{*}\right)$ $\Rightarrow i O$ hides $P R F_{k}\left(x^{*}\right)$

Towards SNARGs from LWE: Replace iO with FHE

(FHE: fully homomorphic encryption)

Towards SNARGs from LWE: Replace iO with FHE

(FHE: fully homomorphic encryption)

sk

Towards SNARGs from LWE: Replace iO with FHE

(FHE: fully homomorphic encryption)

Towards SNARGs from LWE: Replace iO with FHE

(FHE: fully homomorphic encryption)

Eval. on w

sk

Towards SNARGs from LWE: Replace iO with FHE

(FHE: fully homomorphic encryption)

Eval. on w

sk

Towards SNARGs from LWE: Replace iO with FHE

 (FHE: fully homomorphic encryption)

Dec and check whether it's 1

Towards SNARGs from LWE: Replace iO with FHE

(FHE: fully homomorphic encryption)

sk
Dec and check whether it's 1

Towards SNARGs from LWE: Replace iO with FHE

 (FHE: fully homomorphic encryption)

sk
Dec and check whether it's 1

Towards SNARGs from LWE: Replace iO with FHE

(FHE: fully homomorphic encryption)

π proves " $\operatorname{FHE}(C(x, w))$ is computed correctly from some w."

Towards SNARGs from LWE: Replace iO with FHE

(FHE: fully homomorphic encryption)

- CRS depends on x

- Designated Verifier
(will solve later)

Eval. on w
We need a SNARG!

Dec and check whether it's 1
π proves " $\operatorname{FHE}(C(x, w))$ is computed correctly from some w."

Recall: BARGs (Batch Arguments)[Внк17,CJл21]

 CRS

Recall: BARGs (Batch Arguments)[внк17,CJл21]

Recall: BARGs (Batch Arguments)[внк17,CJл21]

Recall: BARGs (Batch Arguments)[Внк17,сנл21]

$$
" x_{1}, x_{2}, \ldots, x_{k} \in L "
$$

$w_{1}, w_{2} \ldots, w_{k}$

Recall: BARGs (Batch Arguments)[внк17,сנл21]

$$
\begin{array}{cc}
w_{1}, w_{2} \ldots, w_{k} \quad \begin{array}{l}
\text { Succinctness: } \\
\text { Proof size } \ll k \cdot\left|w_{i}\right|
\end{array}
\end{array}
$$

Recall: BARGs (Batch Arguments)[внк17,сנл21]

$w_{1}, w_{2} \ldots, w_{k}$

Succinctness:

Accept/Reject

Recall: BARGs (Batch Arguments)[BHк17,CJJ21]

Unbounded

Recall: BARGs (Batch Arguments)[BHк17,CJJ21]

Unbounded

Recall: BARGs (Batch Arguments)[BHк17,CJJ21]

Unbounded

Recall: BARGs (Batch Arguments)[BHK17,CנJ21]

Recall: BARGs (Batch Arguments)[BHK17,CנJ21]

Unbounded
Proof size $\approx|S| \cdot\left|w_{i}\right|$

Somewhere Statistical Soundness
If one of the instances in S is false, then any unbounded-time computed cheating proof should be rejected.

Applying BARGs

$\mathrm{CRS}=\mathrm{FHE}(C(x, \cdot))$

FHE $(C(x, w))$

Applying BARGs

CRS $=\operatorname{FHE}(C(x, \cdot))$
$\operatorname{FHE}(C(x, w))$

Applying BARGs

homomorphic eval on w

Merkle hash
ciphertexts of wires \downarrow
(consistency)
$\operatorname{CRS}=\operatorname{FHE}(C(x, \cdot))$

FHE $(C(x, w))$

Applying BARGs

homomorphic eval on w

Merkle hash
ciphertexts of wires \downarrow
(consistency)
$\operatorname{CRS}=\operatorname{FHE}(C(x, \cdot))$

FHE $(C(x, w))$

h

Applying BARGs

homomorphic eval on w

Merkle hash
ciphertexts of wires \downarrow
(consistency)
$\operatorname{CRS}=\operatorname{FHE}(C(x, \cdot))$

FHE $(C(x, w)) \pi \quad h$

Applying BARGs

Applying BARGs

$$
\operatorname{CRS}=\operatorname{FHE}(C(x, \cdot))
$$

FHE $(C(x, w)) \pi$
 h

How to Prove the Soundness?
BARG \Rightarrow only part of the evaluation is correct
(An Informal) Barrier in Soundness Reduction

(An Informal) Barrier in Soundness Reduction

(An Informal) Barrier in Soundness Reduction

(An Informal) Barrier in Soundness Reduction

Reduction seems need to "tell" whether $x \notin L$ or $x \in L$. (Gentry-Wichs: formalize this intuition (with caveat))

(An Informal) Barrier in Soundness Reduction

Reduction seems need to "tell" whether $x \notin L$ or $x \in L$. (Gentry-Wichs: formalize this intuition (with caveat))

If the reduction runs in $2^{|w|}$-time \Rightarrow FHE security parameters $\geq|w|$ Not Succinct!

(An Informal) Barrier in Soundness Reduction

Reduction seems need to "tell" whether $x \notin L$ or $x \in L$. (Gentry-Wichs: formalize this intuition (with caveat))

If the reduction runs in $2^{|w|}$-time \Rightarrow FHE security parameters $\geq|w|$ Not Succinct!

Efficient Reduction via
Logical Structure of the Language [נ²2]

Efficient Reduction via Logical Structure of the Language ${ }_{\text {[J }{ }^{22]}}$

Poly-size Extended Frege proof of $R(x, \cdot)=0$

Efficient Reduction via Logical Structure of the Language ${ }_{\text {[J }{ }^{22]}}$

Poly-size Extended Frege proof of $R(x, \cdot)=0$
\square

Efficient Reduction via Logical Structure of the Language ${ }_{\left[J J^{2]}\right.}$

Poly-size Extended Frege proof of $R(x, \cdot)=0$

Efficient Reduction via Logical Structure of the Language ${ }_{\left[J J^{2]}\right.}$

Poly-size Extended Frege proof of $R(x, \cdot)=0$

Efficient Reduction via Logical Structure of the Language ${ }_{\left[J J^{2} 2\right]}$

Poly-size Extended Frege proof of $R(x, \cdot)=0$
 except for a $O(\log n)$ size sub-circuits of the same functionality.

Efficient Reduction via Logical Structure of the Language ${ }_{\left[J J^{22}\right.}{ }^{2]}$

Poly-size Extended Frege proof of $R(x, \cdot)=0$

Poly. number of hybrids

Efficient Reduction via
 Logical Structure of the Language ${ }_{\left[J J^{22]}\right.}$

Poly-size Extended Frege proof of $R(x, \cdot)=0$

Poly. number of hybrids

Efficient Reduction via
 Logical Structure of the Language ${ }_{\left[J J^{22]}\right.}$

Poly-size Extended Frege proof of $R(x, \cdot)=0$

Poly. number of hybrids

Efficient Reduction via
 Logical Structure of the Language ${ }_{\left[J J^{22]}\right.}$

Poly-size Extended Frege proof of $R(x, \cdot)=0$

Poly. number of hybrids

Our Approach

Puncturing Argument, via FHE! (Informal)

Puncturing Argument, via FHE! (Informal)

$$
\begin{gathered}
C T_{1} \\
\pi_{1} \quad h_{1}
\end{gathered}
$$

Puncturing Argument, via FHE! (Informal)

Puncturing Argument

If C and C^{\prime} are almost the same except for a functionality equivalent $\mathbf{O}(\log n)$ sub-ckt, then $\operatorname{Dec}\left(s k_{1}, C T_{1}\right)=1$ implies $\operatorname{Dec}\left(s k_{2}, C T_{2}\right)=1$, using poly-secure BARG.

Proving Soundness via Puncturing Argument

Proving Soundness via Puncturing Argument

 Poly-size Extended Frege proof of $R(x, w)=0$- [J22]

Proving Soundness via Puncturing Argument

 Poly-size Extended Frege proof of $R(x, w)=0$- [J22]

Proving Soundness via Puncturing Argument

 Poly-size Extended Frege proof of $R(x, w)=0$- [JJ22]

Proving Soundness via Puncturing Argument

 Poly-size Extended Frege proof of $R(x, w)=0$- [JJ22]
C_{1}
$R(x, \cdot)$

Proving Soundness via Puncturing Argument

 Poly-size Extended Frege proof of $R(x, w)=0$- [JJ22]

Proving Soundness via Puncturing Argument

 Poly-size Extended Frege proof of $R(x, w)=0$- [JJ22]

Puncturing Argument

Proving Soundness via Puncturing Argument

 Poly-size Extended Frege proof of $R(x, w)=0$- [JJ22]
FHE_{1} semantic security
Puncturing Argument

Proving Soundness via Puncturing Argument

Poly-size Extended Frege proof of $R(x, w)=0$

FHE_{1} semantic security
Puncturing Argument

Proving Soundness via Puncturing Argument

Poly-size Extended Frege proof of $R(x, w)=0$

- [JJ22]
FHE_{1} semantic security

Proving Soundness via Puncturing Argument

Poly-size Extended Frege proof of $R(x, w)=0$

- [JJ22]
FHE_{1} semantic security

Proving Soundness via Puncturing Argument

Poly-size Extended Frege proof of $R(x, w)=0$

- [JJ22]
FHE_{1} semantic security

Proving Soundness via Puncturing Argument

Poly-size Extended Frege proof of $R(x, w)=0$

FHE_{1} semantic security

Proving Soundness via Puncturing Argument

Poly-size Extended Frege proof of $R(x, w)=0$

FHE_{1} semantic security

Rest of the Talk

- Proof of Puncturing Argument
- Achieving Public Verification \& Random CRS
- Discussion

Rest of the Talk

- Proof of Puncturing Argument
- Achieving Public Verification \& Random CRS
- Discussion

Recall: Somewhere Statistical Binding (SSB) Hash

[Hubacek-Wichs'15, Okamoto-Pietrzak-Waters-Wichs'15]

Recall: Somewhere Statistical Binding (SSB) Hash

[Hubacek-Wichs'15, Okamoto-Pietrzak-Waters-Wichs'15]
Hash Key: $K(S \subseteq[n]) \quad$ (Pseudorandom)

Recall: Somewhere Statistical Binding (SSB) Hash

[Hubacek-Wichs'15, Okamoto-Pietrzak-Waters-Wichs'15]

$$
\begin{aligned}
& \text { Hash Key: } K(S \subseteq[n]) \quad \text { (Pseudorandom) } \\
& h \leftarrow \operatorname{SSB}\left(K, m_{1}, m_{2}, \ldots, m_{n}\right) \quad|h| \approx|S|
\end{aligned}
$$

Recall: Somewhere Statistical Binding (SSB) Hash

[Hubacek-Wichs'15, Okamoto-Pietrzak-Waters-Wichs'15]
Hash Key: $K(S \subseteq[n]) \quad$ (Pseudorandom)
$h \leftarrow \operatorname{SSB}\left(K, m_{1}, m_{2}, \ldots, m_{n}\right) \quad|h| \approx|S|$
Extraction: $m_{S} \leftarrow \operatorname{Ext}(\operatorname{td}, h)$

Recall: Somewhere Statistical Binding (SSB) Hash

[Hubacek-Wichs'15, Okamoto-Pietrzak-Waters-Wichs'15]

$$
\begin{aligned}
& \text { Hash Key: } K(S \subseteq[n]) \quad \text { (Pseudorandom) } \\
& h \leftarrow \operatorname{SSB}\left(K, m_{1}, m_{2}, \ldots, m_{n}\right) \quad|h| \approx|S| \\
& \text { Extraction: } m_{S} \leftarrow \operatorname{Ext}(\operatorname{td}, h)
\end{aligned}
$$

No-Signaling Property: for any two subsets S_{1}, S_{2},

Recall: Somewhere Statistical Binding (SSB) Hash

[Hubacek-Wichs'15, Okamoto-Pietrzak-Waters-Wichs'15]

> Hash Key: $K(S \subseteq[n]) \quad$ (Pseudorandom)
> $h \leftarrow \operatorname{SSB}\left(K, m_{1}, m_{2}, \ldots, m_{n}\right) \quad|h| \approx|S|$
> Extraction: $m_{S} \leftarrow \operatorname{Ext}(\operatorname{td}, h)$

No-Signaling Property: for any two subsets S_{1}, S_{2},

Recall: Somewhere Statistical Binding (SSB) Hash

[Hubacek-Wichs'15, Okamoto-Pietrzak-Waters-Wichs'15]

> Hash Key: $K(S \subseteq[n]) \quad$ (Pseudorandom)
> $h \leftarrow \operatorname{SSB}\left(K, m_{1}, m_{2}, \ldots, m_{n}\right) \quad|h| \approx|S|$
> Extraction: $m_{S} \leftarrow \operatorname{Ext}(\operatorname{td}, h)$

No-Signaling Property: for any two subsets S_{1}, S_{2},

$$
m_{S_{1} \cap S_{2}} \approx_{c} m_{S_{1} \cap S_{2}}^{\prime}
$$

Recall: Puncturing Argument

If C and C^{\prime} are almost the same except for a functionality equivalent $\mathbf{O}(\log \boldsymbol{n})$ sub-ckt, then $\operatorname{Dec}\left(s k_{1}, C T_{1}\right)=1$ implies $\operatorname{Dec}\left(s k_{2}, C T_{2}\right)=1$, assuming poly-secure BARG.

A Simplified View via Local Assignment Generator

 [BHK17]
A Simplified View via Local Assignment Generator

 [BHK17]

A Simplified View via Local Assignment Generator

 [BHK17]

A Simplified View via Local Assignment Generator

 [BHK17]

A Simplified View via Local Assignment Generator

 [BHK17]

A Simplified View via Local Assignment Generator

 [BHK17]

Properties of Gen

- No-Signaling (from No-Signaling property of SSB)
- Extracted wire values satisfy the gates in S (via Soundness of BARGs)

Puncturing Argument, Rephrased

Puncturing Argument, Rephrased

Puncturing Argument, Rephrased

Extracted output wire = 1

Puncturing Argument, Rephrased

Extracted output wire $=1 \quad \Rightarrow$

Puncturing Argument, Rephrased

Extracted output wire $=1 \quad \Rightarrow \quad$ Extracted output wire $=1$

Puncturing Argument, Rephrased

Blueprint of the Proof

$G e n_{1}$

Blueprint of the Proof

Blueprint of the Proof

1. The corresponding wire values "below" the sub-circuits are the same

Blueprint of the Proof

1. The corresponding wire values "below" the sub-circuits are the same

Blueprint of the Proof

3. The corresponding wire values "above" the sub-circuits are the same.

4. The corresponding wire values "below" the sub-circuits are the same

Blueprint of the Proof

3. The corresponding wire values "above" the sub-circuits are the same.

4. The corresponding wire values "below" the sub-circuits are the same

Proof of Puncturing Argument: Blow the Subckt

Proof by induction from the bottom, i.e. input wires

The extracted wire values are the same?
Add Statements that BARG Proves: $\forall i, \exists$ local openings of the i-th input wire w.r.t. h_{1}, h_{2}, and the wire values $w_{i}, w_{i}{ }^{\prime}$ where $w_{i}=w_{i}{ }^{\prime}$.

Moving Up in the Layers

: extracted gate outputs in local assignment generators

Moving Up in the Layers

: extracted gate outputs in local assignment generators

Moving Up in the Layers

: extracted gate outputs in local assignment generators

Moving Up in the Layers

: extracted gate outputs in local assignment generators

Moving Up in the Layers

: extracted gate outputs in local assignment generators

Moving Up in the Layers

: extracted gate outputs in local assignment generators

Moving Up in the Layers

: extracted gate outputs in local assignment generators

Moving Up in the Layers

: extracted gate outputs in local assignment generators

Moving Up in the Layers

: extracted gate outputs in local assignment generators

Moving Up in the Layers

We need to extract their children first... and the children of their children first...
: extracted gate outputs in local assignment generators

Abstracting as a Pebbling Game

Abstracting as a Pebbling Game

Pebbles: \bigcirc the extracted gates in local assignment generator

Abstracting as a Pebbling Game

$$
\begin{aligned}
& \text { Pebbles: } \text { Othe extracted gates in } \\
& \text { local assignment generator }
\end{aligned}
$$

Rules:

- Place a pebble at an input wire
- Place a pebble if both children is pebbled
- Free to delete a pebble

Abstracting as a Pebbling Game

$$
\begin{aligned}
& \text { Pebbles: } \text { Othe extracted gates in } \\
& \text { local assignment generator }
\end{aligned}
$$

Rules:

- Place a pebble at an input wire
- Place a pebble if both children is pebbled
- Free to delete a pebble

Abstracting as a Pebbling Game

$$
\begin{aligned}
& \text { Pebbles: } \text { Othe extracted gates in } \\
& \text { local assignment generator }
\end{aligned}
$$

Rules:

- Place a pebble at an input wire
- Place a pebble if both children is pebbled
- Free to delete a pebble

Abstracting as a Pebbling Game

$$
\begin{aligned}
& \text { Pebbles: } \text { Othe extracted gates in } \\
& \text { local assignment generator }
\end{aligned}
$$

Rules:

- Place a pebble at an input wire
- Place a pebble if both children is pebbled
- Free to delete a pebble

Abstracting as a Pebbling Game

Pebbles: \bigcirc the extracted gates in local assignment generator

Rules:

- Place a pebble at an input wire
- Place a pebble if both children is pebbled
- Free to delete a pebble

Seems need $2^{\text {depth }}$ moves in general if we only have $O(\log n)$ pebbles

Abstracting as a Pebbling Game

Pebbles: \bigcirc the extracted gates in local assignment generator

Rules:

- Place a pebble at an input wire
- Place a pebble if both children is pebbled
- Free to delete a pebble

Seems need $2^{\text {depth }}$ moves in general if we only have $O(\log n)$ pebbles Reduction time: $2^{\text {depth }}$! More efficient reduction?

Augmenting Ckts with Collision-Resistance Hashes

: extracted gate values in local assignment generators

Augmenting Ckts with Collision-Resistance Hashes

Merkle hash the gate values at each layer via Collision-Resistance Hash (CRHF)
: extracted gate values in local assignment generators

Augmenting Ckts with Collision-Resistance Hashes

Merkle hash the gate values at each layer via Collision-Resistance Hash (CRHF)
: extracted gate values in local assignment generators

Augmenting Ckts with Collision-Resistance Hashes

Merkle hash the gate values at each layer via Collision-Resistance Hash (CRHF)
: extracted gate values in local assignment generators

Augmenting Ckts with Collision-Resistance Hashes

Merkle hash the gate values at each layer via Collision-Resistance Hash (CRHF)

: extracted gate values in local assignment generators

Augmenting Ckts with Collision-Resistance Hashes

Merkle hash the gate values at each layer via Collision-Resistance Hash (CRHF)

: extracted gate values in local assignment generators

Augmenting Ckts with Collision-Resistance Hashes

Merkle hash the gate values at each layer via Collision-Resistance Hash (CRHF)

: extracted gate values in local assignment generators

Augmenting Ckts with Collision-Resistance Hashes

Merkle hash the gate values at each layer via Collision-Resistance Hash (CRHF)

: extracted gate values in local assignment generators

Augmenting Ckts with Collision-Resistance Hashes

Merkle hash the gate values at each layer via Collision-Resistance Hash (CRHF)

- extracted gate values in local assignment generators

The entire layer is "equal" \Leftrightarrow the roots of CRHF trees are "equal".

Moving Up in the Layers

: extracted gate values in local assignment generators

Moving Up in the Layers

: extracted gate values in local assignment generators

Moving Up in the Layers

: extracted gate values in local assignment generators

Moving Up in the Layers

Suppose the left child is the $2^{\text {nd }}$ node in the layer: extracted gate values in local assignment generators

Moving Up in the Layers

"Load" the saved progress from the roots

Suppose the left child is the $2^{\text {nd }}$ node in the layer: extracted gate values in local assignment generators

Moving Up in the Layers

"Load" the saved progress from the roots

Suppose the left child is the $2^{\text {nd }}$ node in the layer: extracted gate values in local assignment generators

Moving Up in the Layers

"Load" the saved progress from the roots

Suppose the left child is the $2^{\text {nd }}$ node in the layer: extracted gate values in local assignment generators

Save the Progress in the Middle of the Subckt

〇: extracted gate values in local assignment generators

Save the Progress in the Middle of the Subckt

Merkle-Hash the layer, but "puncture" the-root-to-leaf path for leaves in subcircuit, and use the roots of remaining subtrees to save the "equality" progress so far.
: extracted gate values in local assignment generators

Save the Progress in the Middle of the Subckt

Merkle-Hash the layer, but "puncture" the-root-to-leaf path for leaves in subcircuit, and use the roots of remaining subtrees to save the "equality" progress so far.
: extracted gate values in local assignment generators

Save the Progress in the Middle of the Subckt

Merkle-Hash the layer, but "puncture" the-root-to-leaf path for leaves in subcircuit, and use the roots of remaining subtrees to save the "equality" progress so far.
: extracted gate values in local assignment generators

Save the Progress in the Middle of the Subckt

Merkle-Hash the layer, but "puncture" the-root-to-leaf path for leaves in subcircuit, and use the roots of remaining subtrees to save the "equality" progress so far.

e.g. $3^{\text {rd }}$ leaf is in the subcircuit: extracted gate values in local assignment generators

Save the Progress in the Middle of the Subckt

Merkle-Hash the layer, but "puncture" the-root-to-leaf path for leaves in subcircuit, and use the roots of remaining subtrees to save the "equality" progress so far.

e.g. $3^{\text {rd }}$ leaf is in the subcircuit: extracted gate values in local assignment generators

Save the Progress in the Middle of the Subckt

Merkle-Hash the layer, but "puncture" the-root-to-leaf path for leaves in subcircuit, and use the roots of remaining subtrees to save the "equality" progress so far.

e.g. $3^{\text {rd }}$ leaf is in the subcircuit: extracted gate values in local assignment generators

Finishing the Proof: "Above" the Subckts

: extracted gate values in local assignment generators

Finishing the Proof: "Above" the Subckts

A general gate:

Left Child: an output wire of the subcircuit
Right Child: a wire outside of the subcircuit
: extracted gate values in local assignment generators

Finishing the Proof: "Above" the Subckts

A general gate:

Left Child: an output wire of the subcircuit
Right Child: a wire outside of the subcircuit
: extracted gate values in local assignment generators

Finishing the Proof: "Above" the Subckts

A general gate:
Left Child: an output wire of the subcircuit
Right Child: a wire outside of the subcircuit
: extracted gate values in local assignment generators

Rest of the Talk

- Achieving Public Verification \& Random CRS
- Discussion

Construction So Far

Construction So Far

- CRS depends on x
- Designated Verifier

Construction So Far

- CRS depends on x
- Designated Verifier

Public Verification: give out $s k_{1}$?

Construction So Far

- CRS depends on x
- Designated Verifier

$C T_{1}$
$C T_{2}$

Public Verification: give out $s k_{1}$?
We don't need to encrypt $R(x, \cdot)$!

Achieving Public Verification

Achieving Public Verification

Achieving Public Verification

Achieving Public Verification

Discussion

(Perspective on this line of 'logic-based’ approach)

Recall: Duality between Logic and Computation

Proof Complexity

Frege
Extended Frege
Poly-size Extended Frege

Cook's Theory PV

Logic: A Forgotten Structure in Cryptography?

Logic: A Forgotten Structure in Cryptography?

Non-black-box use of functions, i.e. use their circuits

Logic: A Forgotten Structure in Cryptography?

Logic: A Forgotten Structure in Cryptography?

"Non-black-box use" of mathematical claims

Non-black-box use of functions, i.e. use their circuits
many examples:
FHE, garbled circuits, arithmetization,

Logic: A Forgotten Structure in Cryptography?

"Non-black-box use" of mathematical claims

- iO via math proofs of equivalence [JJ'22]
- SNARGs via propositional logic [This work]
- ...

Non-black-box use of functions, i.e. use their circuits
many examples:
FHE, garbled circuits, arithmetization,

Logic: A Forgotten Structure in Cryptography?

"Non-black-box use" of mathematical claims

- iO via math proofs of equivalence [JJ'22]
- SNARGs via propositional logic [This work]
- ...

Non-black-box use of functions, i.e. use their circuits
many examples:
FHE, garbled circuits, arithmetization,

Logic: A Forgotten Structure in Cryptography?

"Non-black-box use" of mathematical claims

- iO via math proofs of equivalence [JJ'22]
- SNARGs via propositional logic [This work]
- ...

Non-black-box use of functions, i.e. use their circuits
many examples:
FHE, garbled circuits, arithmetization,

Logic: A Forgotten Structure in Cryptography?

"Non-black-box use" of mathematical claims

- iO via math proofs of equivalence [JJ'22]
- SNARGs via propositional logic [This work]

Non-black-box use of functions, i.e. use their circuits
many examples:
FHE, garbled circuits, arithmetization,

Is non-black-box techniques necessary?

Logic: A Forgotten Structure in Cryptography?

"Non-black-box use" of mathematical claims

- iO via math proofs of equivalence [JJ'22]
- SNARGs via propositional logic [This work]
- ...

Non-black-box use of functions, i.e. use their circuits
many examples:
FHE, garbled circuits, arithmetization,

Is non-black-box techniques necessary?

Logic: A Forgotten Structure in Cryptography?

"Non-black-box use" of mathematical claims

- iO via math proofs of equivalence [JJ'22]
- SNARGs via propositional logic [This work]
- ...

Non-black-box use of functions, i.e. use their circuits
many examples:
FHE, garbled circuits, arithmetization,

Is non-black-box techniques necessary?

Impossibility?
Black-box separations

Thank you!
Q \& A

