
SNARGs Under LWE via
Propositional Proofs

Zhengzhong Jin Yael Tauman Kalai Alex Lombardi Vinod Vaikuntanathan

MIT → Northeastern Microsoft
Research and MIT Princeton MIT

Succinct Non-Interactive Arguments (SNARGs)

CRS CRS

Succinct Non-Interactive Arguments (SNARGs)

CRS CRS
“𝑥 ∈ 𝐿”

Succinct Non-Interactive Arguments (SNARGs)

CRS CRS
“𝑥 ∈ 𝐿”

Succinct Non-Interactive Arguments (SNARGs)

CRS CRS
“𝑥 ∈ 𝐿”

𝐶(𝑥, 𝑤)

Succinct Non-Interactive Arguments (SNARGs)

CRS CRS
“𝑥 ∈ 𝐿”

𝐶(𝑥, 𝑤)
≪ 𝑤

Succinct Non-Interactive Arguments (SNARGs)

CRS CRS
“𝑥 ∈ 𝐿”

𝐶(𝑥, 𝑤)
≪ 𝑤

• Completeness: ∀𝑥 ∈ 𝐿, the honestly generated proof is accepted.

Succinct Non-Interactive Arguments (SNARGs)

CRS CRS
“𝑥 ∈ 𝐿”

≪ 𝑤

• Soundness: for any 𝑥 ∉ 𝐿, and any efficient adversary, the cheating
proof should be rejected.

Poly-time adversary

• Completeness: ∀𝑥 ∈ 𝐿, the honestly generated proof is accepted.

Can we build SNARGs for NP?

Can we build SNARGs for NP?

Micali’00, IKO’07, GKR’08, IKOS’09, Groth’10, SBW’11, SMBW’12, Lipmaa’12, CMT’12,
DFH’12, SVPBBW’12, TRMP’12, GGPR’13, BCIOP’13, BCCT’13, Thaler’13, BCGTV’13,

PHGR’13, BSCGT’13, BCGGMTV’14, BCCGP’16, Groth’16, GMO’16, GLRT’17,
AHIV’17, BSBCGGHPRST’17, WJBSTWW’17, BBBPWM’18, BCGMMW’18, BSBHR’18,

WTSTW’18, WZCPS’18, GMNO’18, FKL’18, BBCGI’19, BBHR’19, BCRSVW’19,
BSCRSVW’19, CFQ19, GWC’19, KPV’19, KPY’19, MBKM’19, Nitulescu’19, XZZPS’19,
Gabizon’19, BBS’20, BSCIKS’20, BFHVXZ’20, COS’20, CHMMVW’20, KZ’20, KPPS’20,
SGKS’20, SL’20, Setty’20, ZXZS’20, BMMTV’21, GLSTW’21, GMN21, GPR’21, Sta’21,

ZLWZSXZ’21, Bay’22, CBBZ’22, XZCZZJBS’22, XZS’22, ...

Can we build SNARGs for NP?

Micali’00, IKO’07, GKR’08, IKOS’09, Groth’10, SBW’11, SMBW’12, Lipmaa’12, CMT’12,
DFH’12, SVPBBW’12, TRMP’12, GGPR’13, BCIOP’13, BCCT’13, Thaler’13, BCGTV’13,

PHGR’13, BSCGT’13, BCGGMTV’14, BCCGP’16, Groth’16, GMO’16, GLRT’17,
AHIV’17, BSBCGGHPRST’17, WJBSTWW’17, BBBPWM’18, BCGMMW’18, BSBHR’18,

WTSTW’18, WZCPS’18, GMNO’18, FKL’18, BBCGI’19, BBHR’19, BCRSVW’19,
BSCRSVW’19, CFQ19, GWC’19, KPV’19, KPY’19, MBKM’19, Nitulescu’19, XZZPS’19,
Gabizon’19, BBS’20, BSCIKS’20, BFHVXZ’20, COS’20, CHMMVW’20, KZ’20, KPPS’20,
SGKS’20, SL’20, Setty’20, ZXZS’20, BMMTV’21, GLSTW’21, GMN21, GPR’21, Sta’21,

ZLWZSXZ’21, Bay’22, CBBZ’22, XZCZZJBS’22, XZS’22, ...

Random Oracle Model, or
Knowledge-type Assumptions

SNARGs for NP from well-studied assumptions?

[Gentry-Wichs’12] Impossibility from falsifiable assumptions

SNARGs for NP from well-studied assumptions?

(Caveat: require adaptive soundness and black-box soundness reduction)

[Gentry-Wichs’12] Impossibility from falsifiable assumptions

SNARGs for NP from well-studied assumptions?

For 𝐿 ∈ 𝑁𝑃 with “hardness” 𝑇 (𝐿 needs time 𝑇 to decide),
the proof size is unlikely ≪ log	𝑇.

(Caveat: require adaptive soundness and black-box soundness reduction)

[Gentry-Wichs’12] Impossibility from falsifiable assumptions

SNARGs for NP from well-studied assumptions?

For 𝐿 ∈ 𝑁𝑃 with “hardness” 𝑇 (𝐿 needs time 𝑇 to decide),
the proof size is unlikely ≪ log	𝑇.

(Caveat: require adaptive soundness and black-box soundness reduction)

For this Talk: A SNARG is “truly succinct” if proof size	≪ log	𝑇.
(SNARGs for NP must be truly succinct.)

[Gentry-Wichs’12] Impossibility from falsifiable assumptions

SNARGs for NP from well-studied assumptions?

For 𝐿 ∈ 𝑁𝑃 with “hardness” 𝑇 (𝐿 needs time 𝑇 to decide),
the proof size is unlikely ≪ log	𝑇.

(Caveat: require adaptive soundness and black-box soundness reduction)

For this Talk: A SNARG is “truly succinct” if proof size	≪ log	𝑇.
(SNARGs for NP must be truly succinct.)

Circumvent?

Prior Works Circumvent Gentry-Wichs

Prior Works Circumvent Gentry-Wichs
Not “Truly Succinct”

Assumption: standard (LWE, DDH, …)

• Batch-NP [BHK17, CJJ21]
• P [KRR14, CJJ21, KVZ21]
• Bounded-space Non-

deterministic comp. [KVZ21]
• Monotone policy Batch-NP

[BBKLP23]

Prior Works Circumvent Gentry-Wichs
Not “Truly Succinct”

Assumption: standard (LWE, DDH, …)

• Batch-NP [BHK17, CJJ21]
• P [KRR14, CJJ21, KVZ21]
• Bounded-space Non-

deterministic comp. [KVZ21]
• Monotone policy Batch-NP

[BBKLP23]

• NP [SW14, WW24]
• Languages that have a “mathematical proof of

non-membership” [JJ22]

“Truly succinct”

Assumption: require indistinguishability obfuscation
(iO)

Prior Works Circumvent Gentry-Wichs
Not “Truly Succinct”

Assumption: standard (LWE, DDH, …)

• Batch-NP [BHK17, CJJ21]
• P [KRR14, CJJ21, KVZ21]
• Bounded-space Non-

deterministic comp. [KVZ21]
• Monotone policy Batch-NP

[BBKLP23]

We don’t know any truly succinct SNARGs from standard assumptions!

• NP [SW14, WW24]
• Languages that have a “mathematical proof of

non-membership” [JJ22]

“Truly succinct”

Assumption: require indistinguishability obfuscation
(iO)

Can we build truly succinct SNARGs from
standard assumptions?

(Recall: truly succinct means proof size ≪ log	𝑇 for any
NP languages that require time 𝑇 to decide.)

Can we build truly succinct SNARGs from
standard assumptions?

(One step closer to SNARGs for NP from standard assumptions)

(Recall: truly succinct means proof size ≪ log	𝑇 for any
NP languages that require time 𝑇 to decide.)

Our Results (I)
SNARGs from learning with errors (LWE) for NP languages that have a poly-size

propositional proof of non-membership, with uniformly random CRS, where

• Proof size = poly(𝜆)

• CRS size = poly(prop. proof length, 𝜆)

Construction doesn’t need to use the propositional proof.

Our Results (I)
SNARGs from learning with errors (LWE) for NP languages that have a poly-size

propositional proof of non-membership, with uniformly random CRS, where

• Proof size = poly(𝜆)

• CRS size = poly(prop. proof length, 𝜆)

Construction doesn’t need to use the propositional proof.

Propositional Proof of Non-Membership

∀	𝑥 ∉ 𝐿, there exists a poly-size propositional proof of

𝐶 𝑥,⋅ = 0

Propositional Logic (Extended Frege)

𝑥, 𝑤

𝐶!"#

𝐶

Frege Hilbert

…

𝜃!

𝜃"

𝜃#

…

𝜃$

(Example: a non-membership proof of 𝑥)
Propositional Logic (Extended Frege)

𝑥, 𝑤

𝐶!"#

𝐶

Frege Hilbert

…

𝜃!

𝜃"

𝜃#

…

𝜃$

(Example: a non-membership proof of 𝑥)
Propositional Logic (Extended Frege)

𝑥, 𝑤

𝐶!"#

𝐶

“lines” in the proof: boolean formulas
Frege Hilbert

…

𝜃!

𝜃"

𝜃#

…

𝜃$

(Example: a non-membership proof of 𝑥)
Propositional Logic (Extended Frege)

𝑥, 𝑤

𝐶!"#

𝐶

“lines” in the proof: boolean formulas
Frege Hilbert

…

𝜃!

𝜃"

𝜃#

…

𝜃$

(Example: a non-membership proof of 𝑥)
Propositional Logic (Extended Frege)

𝑥, 𝑤

𝐶!"#

𝐶

“lines” in the proof: boolean formulas
Frege Hilbert

…

𝜃!

𝜃"

𝜃#

…

𝜃$

(Example: a non-membership proof of 𝑥)
Propositional Logic (Extended Frege)

𝑥, 𝑤

𝐶!"#

𝐶

“lines” in the proof: boolean formulas

• Premise (i.e. gates in 𝐶)

• Inference:	𝜃!" ∧ ⋯∧ 𝜃#" → 𝜃$ is a 𝑂(1)-size tautology
• Extensions: define a new variable, e.g. “𝑒”
 𝑒 ↔ 𝜙

Frege Hilbert

…

𝜃!

𝜃"

𝜃#

…

𝜃$

(Example: a non-membership proof of 𝑥)
Propositional Logic (Extended Frege)

𝑥, 𝑤

𝐶!"#

𝐶

“lines” in the proof: boolean formulas

• Premise (i.e. gates in 𝐶)

• Inference:	𝜃!" ∧ ⋯∧ 𝜃#" → 𝜃$ is a 𝑂(1)-size tautology
• Extensions: define a new variable, e.g. “𝑒”
 𝑒 ↔ 𝜙 𝑎 𝑏

𝑜
∧

e.g. “𝑜 ↔ 𝑎 ∧ 𝑏”

Frege Hilbert

…

𝜃!

𝜃"

𝜃#

…

𝜃$

(Example: a non-membership proof of 𝑥)
Propositional Logic (Extended Frege)

𝑥, 𝑤

𝐶!"#

𝐶

“lines” in the proof: boolean formulas

• Premise (i.e. gates in 𝐶)

• Inference:	𝜃!" ∧ ⋯∧ 𝜃#" → 𝜃$ is a 𝑂(1)-size tautology
• Extensions: define a new variable, e.g. “𝑒”
 𝑒 ↔ 𝜙 𝑎 𝑏

𝑜
∧

Frege Hilbert

…

𝜃!

𝜃"

𝜃#

…

𝜃$

(Example: a non-membership proof of 𝑥)
Propositional Logic (Extended Frege)

𝑥, 𝑤

𝐶!"#

𝐶

“lines” in the proof: boolean formulas

• Premise (i.e. gates in 𝐶)

• Inference:	𝜃!" ∧ ⋯∧ 𝜃#" → 𝜃$ is a 𝑂(1)-size tautology
• Extensions: define a new variable, e.g. “𝑒”
 𝑒 ↔ 𝜙 𝑎 𝑏

𝑜
∧

Frege Hilbert

…

𝜃!

𝜃"

𝜃#

…

𝜃$

(Example: a non-membership proof of 𝑥)
Propositional Logic (Extended Frege)

𝑥, 𝑤

𝐶!"#

𝐶

“lines” in the proof: boolean formulas

• Premise (i.e. gates in 𝐶)

• Inference:	𝜃!" ∧ ⋯∧ 𝜃#" → 𝜃$ is a 𝑂(1)-size tautology
• Extensions: define a new variable, e.g. “𝑒”
 𝑒 ↔ 𝜙 𝑎 𝑏

𝑜
∧

Frege Hilbert

𝜃!′

𝜃#′
…

𝜃!

𝜃"

𝜃#

…

𝜃$

(Example: a non-membership proof of 𝑥)
Propositional Logic (Extended Frege)

𝑥, 𝑤

𝐶!"#

𝐶

“lines” in the proof: boolean formulas

• Premise (i.e. gates in 𝐶)

• Inference:	𝜃!" ∧ ⋯∧ 𝜃#" → 𝜃$ is a 𝑂(1)-size tautology
• Extensions: define a new variable, e.g. “𝑒”
 𝑒 ↔ 𝜙 𝑎 𝑏

𝑜
∧

Frege Hilbert

…

𝜃!

𝜃"

𝜃#

…

𝜃$

(Example: a non-membership proof of 𝑥)
Propositional Logic (Extended Frege)

𝑥, 𝑤

𝐶!"#

𝐶

“lines” in the proof: boolean formulas

• Premise (i.e. gates in 𝐶)

• Inference:	𝜃!" ∧ ⋯∧ 𝜃#" → 𝜃$ is a 𝑂(1)-size tautology
• Extensions: define a new variable, e.g. “𝑒”
 𝑒 ↔ 𝜙 𝑎 𝑏

𝑜
∧

Frege Hilbert

…

𝜃!

𝜃"

𝜃#

…

𝜃$

(Example: a non-membership proof of 𝑥)
Propositional Logic (Extended Frege)

𝑥, 𝑤

𝐶!"#

𝐶

“lines” in the proof: boolean formulas

• Premise (i.e. gates in 𝐶)

• Inference:	𝜃!" ∧ ⋯∧ 𝜃#" → 𝜃$ is a 𝑂(1)-size tautology
• Extensions: define a new variable, e.g. “𝑒”
 𝑒 ↔ 𝜙 𝑎 𝑏

𝑜
∧

Frege Hilbert

…

𝜃!

𝜃"

𝜃#

…

𝜃$

(Example: a non-membership proof of 𝑥)
Propositional Logic (Extended Frege)

𝑥, 𝑤

𝐶!"#

𝐶

“lines” in the proof: boolean formulas

• Premise (i.e. gates in 𝐶)

• Inference:	𝜃!" ∧ ⋯∧ 𝜃#" → 𝜃$ is a 𝑂(1)-size tautology
• Extensions: define a new variable, e.g. “𝑒”
 𝑒 ↔ 𝜙

: The theorem statement itself (i.e. “𝐶%&' ↔ 0”)

𝑎 𝑏

𝑜
∧

Frege Hilbert

…

Recall: Our Results (I)
SNARGs from learning with errors (LWE) for NP languages that

have a poly-size propositional proof of non-membership, where

• Proof size = poly(𝜆)

• CRS size = poly(prop. proof length, 𝜆)

Recall: Our Results (I)
SNARGs from learning with errors (LWE) for NP languages that

have a poly-size propositional proof of non-membership, where

• Proof size = poly(𝜆)

• CRS size = poly(prop. proof length, 𝜆)

Why should I care about
propositional proofs?

(a cryptographer)

Context: Duality between Logic and Computation

Context: Duality between Logic and Computation

Computation

Context: Duality between Logic and Computation

Logic Computation

Context: Duality between Logic and Computation

Logic Computation

Formulas

Context: Duality between Logic and Computation

Logic Computation

Frege Formulas

Context: Duality between Logic and Computation

Logic Computation

Frege

Circuits

Formulas

Context: Duality between Logic and Computation

Logic Computation

Extended Frege

Frege

Circuits

Formulas

Context: Duality between Logic and Computation

Logic Computation

Extended Frege

Frege

Circuits

Formulas

Poly-size Circuits

Context: Duality between Logic and Computation

Logic Computation

Extended Frege

Frege

Circuits

Formulas

Poly-size Extended Frege Poly-size Circuits

Context: Duality between Logic and Computation

Logic Computation

Extended Frege

Frege

Circuits

Formulas

Poly-size Extended Frege Poly-size Circuits

Poly-time Turing Machines

Context: Duality between Logic and Computation

Logic Computation

Extended Frege

Frege

Circuits

Formulas

Poly-size Extended Frege Poly-size Circuits

Cook’s Theory PV [1975] Poly-time Turing Machines

Context: Duality between Logic and Computation

Logic Computation

Extended Frege

Frege

Circuits

Formulas

Poly-size Extended Frege Poly-size Circuits

Cook’s Theory PV [1975] Poly-time Turing Machines

… …

Context: Duality between Logic and Computation

Logic Computation

Extended Frege

Frege

Circuits

Formulas

Poly-size Extended Frege Poly-size Circuits

Cook’s Theory PV [1975] Poly-time Turing Machines

… …

Computational resources (time/space)
used to decide the language?

(Computational complexity)

Context: Duality between Logic and Computation

Logic Computation

Extended Frege

Frege

Circuits

Formulas

Poly-size Extended Frege Poly-size Circuits

Cook’s Theory PV [1975] Poly-time Turing Machines

… …

Resources (sizes) of proofs used to
prove co-NP statements?

(non-membership)

Proof complexity

Computational resources (time/space)
used to decide the language?

(Computational complexity)

Context: Duality between Logic and Computation

Logic Computation

Extended Frege

Frege

Circuits

Formulas

Poly-size Extended Frege Poly-size Circuits

Cook’s Theory PV [1975] Poly-time Turing Machines

… …

Resources (sizes) of proofs used to
prove co-NP statements?

(non-membership)

Proof complexity

Computational resources (time/space)
used to decide the language?

(Computational complexity)

Example languages?

Corollary (via Cook’s Theory PV)

SNARGs from LWE for decisional Diffie-Hellman language

𝐿 = { 𝑔, 𝑔(, 𝑔), 𝑔() } over 𝑛-bits standard group.

• Proof size = poly(𝜆), independent of 𝑛!

• CRS size = poly(𝜆, 𝑛)

Corollary (via Cook’s Theory PV)

SNARGs from LWE for decisional Diffie-Hellman language

𝐿 = { 𝑔, 𝑔(, 𝑔), 𝑔() } over 𝑛-bits standard group.

• Proof size = poly(𝜆), independent of 𝑛!

• CRS size = poly(𝜆, 𝑛)

Fully Succinct: 𝐿 requires 2%('!/#) time to decide, but
SNARG proof size ≪ 𝑛.

Our Results (II)
SNARGs from 𝑇-hardness of (LWE) for NP languages that have a

propositional proof of non-membership of space 𝑆 and (possibly super-

poly) length 𝑇, where

• |Proof| = poly(log	𝑇, 𝜆)

• |CRS| = poly(𝑆, log	𝑇, 𝜆)

Our Results (II)
SNARGs from 𝑇-hardness of (LWE) for NP languages that have a

propositional proof of non-membership of space 𝑆 and (possibly super-

poly) length 𝑇, where

• |Proof| = poly(log	𝑇, 𝜆)

• |CRS| = poly(𝑆, log	𝑇, 𝜆)

“Dual” of SNARGs for bounded space non-
deterministic computation NTISP(𝑆, 𝑇)

(Proof and CRS size = poly(𝑆, log	𝑇))

Main Challenge

Recall: Indistinguishability Obfuscation (iO)

𝑖𝑂

Recall: Indistinguishability Obfuscation (iO)

𝑖𝑂

• Preserve Functionality: 𝑖𝑂(𝐶) preserves the functionality of 𝐶

Recall: Indistinguishability Obfuscation (iO)

𝑖𝑂

• Preserve Functionality: 𝑖𝑂(𝐶) preserves the functionality of 𝐶

• Indistinguishability Security: for any 𝐶*, 𝐶! that compute the same function,

𝑖𝑂 𝐶* ≈# 𝑖𝑂 	𝐶!

Starting Point: SW-SNARGs from iO
CRS

M𝑃𝐾 = 𝑖𝑂
𝑃𝐾(𝑥,𝑤):
 if 𝐶 𝑥,𝑤 = 1:
 output 𝑃𝑅𝐹$(𝑥)

= M𝑉𝐾𝑖𝑂
𝑉𝐾(𝑥, 𝜎):
 𝜎 =? 𝑃𝑅𝐹$(𝑥)

Starting Point: SW-SNARGs from iO
CRS

M𝑃𝐾 = 𝑖𝑂
𝑃𝐾(𝑥,𝑤):
 if 𝐶 𝑥,𝑤 = 1:
 output 𝑃𝑅𝐹$(𝑥)

= M𝑉𝐾𝑖𝑂
𝑉𝐾(𝑥, 𝜎):
 𝜎 =? 𝑃𝑅𝐹$(𝑥)

(𝑥, 𝑤) 𝜎

Starting Point: SW-SNARGs from iO
CRS

M𝑃𝐾 = 𝑖𝑂
𝑃𝐾(𝑥,𝑤):
 if 𝐶 𝑥,𝑤 = 1:
 output 𝑃𝑅𝐹$(𝑥)

= M𝑉𝐾𝑖𝑂
𝑉𝐾(𝑥, 𝜎):
 𝜎 =? 𝑃𝑅𝐹$(𝑥)

(𝑥, 𝑤) 𝜎
𝜎

Starting Point: SW-SNARGs from iO
CRS

M𝑃𝐾 = 𝑖𝑂
𝑃𝐾(𝑥,𝑤):
 if 𝐶 𝑥,𝑤 = 1:
 output 𝑃𝑅𝐹$(𝑥)

= M𝑉𝐾𝑖𝑂
𝑉𝐾(𝑥, 𝜎):
 𝜎 =? 𝑃𝑅𝐹$(𝑥)

(𝑥, 𝑤) 𝜎
𝜎

Intuition for Soundness: ∀	𝑥∗ ∉ 𝐿, (𝑃𝐾 never outputs 𝑃𝑅𝐹" 𝑥∗
⇒ 	𝑖𝑂 hides 𝑃𝑅𝐹" 𝑥∗

Starting Point: SW-SNARGs from iO
CRS

M𝑃𝐾 = 𝑖𝑂
𝑃𝐾(𝑥,𝑤):
 if 𝐶 𝑥,𝑤 = 1:
 output 𝑃𝑅𝐹$(𝑥)

= M𝑉𝐾𝑖𝑂
𝑉𝐾(𝑥, 𝜎):
 𝜎 =? 𝑃𝑅𝐹$(𝑥)

(𝑥, 𝑤) 𝜎
𝜎

Intuition for Soundness: ∀	𝑥∗ ∉ 𝐿, (𝑃𝐾 never outputs 𝑃𝑅𝐹" 𝑥∗
⇒ 	𝑖𝑂 hides 𝑃𝑅𝐹" 𝑥∗

Can we instantiate this template from LWE?

Towards SNARGs from LWE: Replace iO with FHE
(FHE: fully homomorphic encryption)

Towards SNARGs from LWE: Replace iO with FHE
(FHE: fully homomorphic encryption)

CRS

FHE 𝐶(𝑥,⋅)

𝑠𝑘

Towards SNARGs from LWE: Replace iO with FHE
(FHE: fully homomorphic encryption)

CRS

FHE 𝐶(𝑥,⋅)

𝑠𝑘Eval. on 𝑤

Towards SNARGs from LWE: Replace iO with FHE
(FHE: fully homomorphic encryption)

CRS

FHE 𝐶(𝑥,⋅)

𝑠𝑘Eval. on 𝑤 FHE 𝐶 𝑥,𝑤

Towards SNARGs from LWE: Replace iO with FHE
(FHE: fully homomorphic encryption)

CRS

FHE 𝐶(𝑥,⋅)

𝑠𝑘Eval. on 𝑤 FHE 𝐶 𝑥,𝑤

Towards SNARGs from LWE: Replace iO with FHE
(FHE: fully homomorphic encryption)

CRS

FHE 𝐶(𝑥,⋅)

𝑠𝑘Eval. on 𝑤 FHE 𝐶 𝑥,𝑤
Dec and check
whether it’s 1

Towards SNARGs from LWE: Replace iO with FHE
(FHE: fully homomorphic encryption)

CRS

FHE 𝐶(𝑥,⋅)

𝑠𝑘Eval. on 𝑤 FHE 𝐶 𝑥,𝑤
Dec and check
whether it’s 1

𝜋

Towards SNARGs from LWE: Replace iO with FHE
(FHE: fully homomorphic encryption)

CRS

FHE 𝐶(𝑥,⋅)

𝑠𝑘Eval. on 𝑤 FHE 𝐶 𝑥,𝑤
Dec and check
whether it’s 1

𝜋

𝜋 proves “FHE 𝐶 𝑥,𝑤 is computed correctly from some 𝑤.”

Towards SNARGs from LWE: Replace iO with FHE
(FHE: fully homomorphic encryption)

CRS

FHE 𝐶(𝑥,⋅)

𝑠𝑘Eval. on 𝑤 FHE 𝐶 𝑥,𝑤
Dec and check
whether it’s 1

𝜋

𝜋 proves “FHE 𝐶 𝑥,𝑤 is computed correctly from some 𝑤.”

We need a SNARG!

Towards SNARGs from LWE: Replace iO with FHE
(FHE: fully homomorphic encryption)

CRS

FHE 𝐶(𝑥,⋅)

𝑠𝑘Eval. on 𝑤 FHE 𝐶 𝑥,𝑤
Dec and check
whether it’s 1

• CRS depends on 𝑥
• Designated Verifier

(will solve later)

𝜋

𝜋 proves “FHE 𝐶 𝑥,𝑤 is computed correctly from some 𝑤.”

We need a SNARG!

Recall: BARGs (Batch Arguments)[BHK17,CJJ21]
CRS

Recall: BARGs (Batch Arguments)[BHK17,CJJ21]
CRS

“𝑥!, 𝑥", … , 𝑥) ∈ 𝐿”

Recall: BARGs (Batch Arguments)[BHK17,CJJ21]
CRS

“𝑥!, 𝑥", … , 𝑥) ∈ 𝐿”

Recall: BARGs (Batch Arguments)[BHK17,CJJ21]
CRS

“𝑥!, 𝑥", … , 𝑥) ∈ 𝐿”

𝑤!, 𝑤"… ,𝑤)

Recall: BARGs (Batch Arguments)[BHK17,CJJ21]
CRS

“𝑥!, 𝑥", … , 𝑥) ∈ 𝐿”

𝑤!, 𝑤"… ,𝑤) Succinctness:
Proof size ≪ 𝑘 ⋅ |𝑤#|

Recall: BARGs (Batch Arguments)[BHK17,CJJ21]
CRS

Accept/Reject

“𝑥!, 𝑥", … , 𝑥) ∈ 𝐿”

𝑤!, 𝑤"… ,𝑤) Succinctness:
Proof size ≪ 𝑘 ⋅ |𝑤#|

Recall: BARGs (Batch Arguments)[BHK17,CJJ21]
CRS 𝑆 ≈* 𝑈

Unbounded

𝑆: a small subset of [𝑘]

Recall: BARGs (Batch Arguments)[BHK17,CJJ21]
CRS 𝑆 ≈* 𝑈

Unbounded

𝑆: a small subset of [𝑘]

Recall: BARGs (Batch Arguments)[BHK17,CJJ21]
CRS 𝑆 ≈* 𝑈

Proof size ≈ 𝑆 ⋅ |𝑤#|Unbounded

𝑆: a small subset of [𝑘]

Recall: BARGs (Batch Arguments)[BHK17,CJJ21]
CRS 𝑆 ≈* 𝑈

Proof size ≈ 𝑆 ⋅ |𝑤#|

If one of the instances in 𝑆 is false, then any unbounded-time
computed cheating proof should be rejected.

Somewhere Statistical Soundness

Unbounded

𝑆: a small subset of [𝑘]

Recall: BARGs (Batch Arguments)[BHK17,CJJ21]
CRS 𝑆 ≈* 𝑈

Proof size ≈ 𝑆 ⋅ |𝑤#|

If one of the instances in 𝑆 is false, then any unbounded-time
computed cheating proof should be rejected.

Somewhere Statistical Soundness

Unbounded

𝑆: a small subset of [𝑘]

Applying BARGs
CRS = FHE 𝐶(𝑥,⋅)

FHE 𝐶 𝑥,𝑤

Applying BARGs
CRS = FHE 𝐶(𝑥,⋅)

FHE 𝐶 𝑥,𝑤

𝑔

𝑟

𝑜
∧

𝑙

homomorphic eval on 𝑤

Applying BARGs
CRS = FHE 𝐶(𝑥,⋅)

FHE 𝐶 𝑥,𝑤

Merkle hash
ciphertexts of wires

(consistency) ℎ

𝑔

𝑟

𝑜
∧

𝑙

homomorphic eval on 𝑤

Applying BARGs
CRS = FHE 𝐶(𝑥,⋅)

FHE 𝐶 𝑥,𝑤 ℎ

Merkle hash
ciphertexts of wires

(consistency) ℎ

𝑔

𝑟

𝑜
∧

𝑙

homomorphic eval on 𝑤

Applying BARGs
CRS = FHE 𝐶(𝑥,⋅)

FHE 𝐶 𝑥,𝑤 𝜋 ℎ

Merkle hash
ciphertexts of wires

(consistency) ℎ

𝑔

𝑟

𝑜
∧

𝑙

homomorphic eval on 𝑤

Applying BARGs
CRS = FHE 𝐶(𝑥,⋅)

FHE 𝐶 𝑥,𝑤 𝜋 ℎ

Merkle hash
ciphertexts of wires

(consistency) ℎ
𝜋 proves “∀ gate 𝑔, ∃ local openings 𝜌/, 𝜌0, 𝜌1 of

𝑐𝑡/, 𝑐𝑡0, 𝑐𝑡1	w.r.t. ℎ, and 𝑐𝑡1 = 𝑔(𝑐𝑡/, 𝑐𝑡0)” using BARG.

𝑔

𝑟

𝑜
∧

𝑙

homomorphic eval on 𝑤

Applying BARGs
CRS = FHE 𝐶(𝑥,⋅)

FHE 𝐶 𝑥,𝑤 𝜋 ℎ

Merkle hash
ciphertexts of wires

(consistency) ℎ
𝜋 proves “∀ gate 𝑔, ∃ local openings 𝜌/, 𝜌0, 𝜌1 of

𝑐𝑡/, 𝑐𝑡0, 𝑐𝑡1	w.r.t. ℎ, and 𝑐𝑡1 = 𝑔(𝑐𝑡/, 𝑐𝑡0)” using BARG.

𝑔

𝑟

𝑜
∧

𝑙

homomorphic eval on 𝑤

How to Prove the Soundness?
BARG ⇒ only part of the evaluation is correct

(An Informal) Barrier in Soundness Reduction

(An Informal) Barrier in Soundness Reduction

Reduction LWE
Break

if 𝑥 ∉ 𝐿

(Soundness)

(An Informal) Barrier in Soundness Reduction

Reduction LWE
Break

if 𝑥 ∉ 𝐿

(Soundness)

Reduction LWE
NOT break

if 𝑥 ∈ 𝐿

(An Informal) Barrier in Soundness Reduction

Reduction LWE
Break

if 𝑥 ∉ 𝐿

(Soundness)

Reduction seems need to “tell” whether 𝑥 ∉ 𝐿 or 𝑥 ∈ 𝐿.
(Gentry-Wichs: formalize this intuition (with caveat))

Reduction LWE
NOT break

if 𝑥 ∈ 𝐿

(An Informal) Barrier in Soundness Reduction

Reduction LWE
Break

if 𝑥 ∉ 𝐿

(Soundness)

Reduction seems need to “tell” whether 𝑥 ∉ 𝐿 or 𝑥 ∈ 𝐿.
(Gentry-Wichs: formalize this intuition (with caveat))

If the reduction runs in 2|3|-time ⇒ FHE security parameters ≥ |𝑤|
Not Succinct!

Reduction LWE
NOT break

if 𝑥 ∈ 𝐿

(An Informal) Barrier in Soundness Reduction

Reduction LWE
Break

if 𝑥 ∉ 𝐿

(Soundness)

Reduction seems need to “tell” whether 𝑥 ∉ 𝐿 or 𝑥 ∈ 𝐿.
(Gentry-Wichs: formalize this intuition (with caveat))

If the reduction runs in 2|3|-time ⇒ FHE security parameters ≥ |𝑤|
Not Succinct!

Reduction LWE
NOT break

if 𝑥 ∈ 𝐿

(poly-time reduction?)

Efficient Reduction via
Logical Structure of the Language [JJ’22]

Efficient Reduction via
Logical Structure of the Language [JJ’22]

Poly-size Extended Frege proof of 𝑅 𝑥,⋅ = 0

Efficient Reduction via
Logical Structure of the Language [JJ’22]

Poly-size Extended Frege proof of 𝑅 𝑥,⋅ = 0

Efficient Reduction via
Logical Structure of the Language [JJ’22]

Poly-size Extended Frege proof of 𝑅 𝑥,⋅ = 0

𝐶! 𝐶" 𝐶- 𝐶./01…

𝑅(𝑥,⋅) 0
𝑤

Efficient Reduction via
Logical Structure of the Language [JJ’22]

Poly-size Extended Frege proof of 𝑅 𝑥,⋅ = 0

𝐶! 𝐶" 𝐶- 𝐶./01…

𝑅(𝑥,⋅) 0
𝑤

Efficient Reduction via
Logical Structure of the Language [JJ’22]

Poly-size Extended Frege proof of 𝑅 𝑥,⋅ = 0

𝐶! 𝐶" 𝐶- 𝐶./01…

𝑅(𝑥,⋅) 0
𝑤

Adjacent pair of circuits are almost the same,
except for a O(log n) size sub-circuits of the same functionality.

Efficient Reduction via
Logical Structure of the Language [JJ’22]

Poly-size Extended Frege proof of 𝑅 𝑥,⋅ = 0

…
𝐶! 𝐶4 𝐶- 0

Poly. number of hybrids

≈𝒄≈𝒄

Efficient Reduction via
Logical Structure of the Language [JJ’22]

Poly-size Extended Frege proof of 𝑅 𝑥,⋅ = 0

…
𝐶! 𝐶4 𝐶- 0

Poly. number of hybrids

≈𝒄≈𝒄

A “Puncturing Argument” with
quasi-polynomial time reduction

Efficient Reduction via
Logical Structure of the Language [JJ’22]

Poly-size Extended Frege proof of 𝑅 𝑥,⋅ = 0

…
𝐶! 𝐶4 𝐶- 0

Poly. number of hybrids

≈𝒄≈𝒄

A “Puncturing Argument” with
quasi-polynomial time reduction

⇒ Total reduction time = quasi-poly!

Efficient Reduction via
Logical Structure of the Language [JJ’22]

Poly-size Extended Frege proof of 𝑅 𝑥,⋅ = 0

…
𝐶! 𝐶4 𝐶- 0

Poly. number of hybrids

≈𝒄≈𝒄

A “Puncturing Argument” with
quasi-polynomial time reduction

⇒ Total reduction time = quasi-poly!JJ’22 realizes “puncturing
argument” using iO

Our Approach

Puncturing Argument, via FHE! (Informal)
CRS

𝐶𝑇!
𝜋! ℎ!

FHE!
𝐶

Puncturing Argument, via FHE! (Informal)

Add another FHE

CRS

𝐶𝑇!
𝜋! ℎ!

FHE!
𝐶

FHE"
𝐶′

Puncturing Argument, via FHE! (Informal)

Add another FHE

CRS

𝐶𝑇!
𝜋! ℎ!

FHE!
𝐶

FHE"
𝐶′

𝜋" ℎ"

𝐶𝑇"

Puncturing Argument, via FHE! (Informal)

Add another FHE

CRS

𝑠𝑘!, 𝑠𝑘"

𝐶𝑇!
𝜋! ℎ!

FHE!
𝐶

FHE"
𝐶′

𝜋" ℎ"

𝐶𝑇"

Puncturing Argument, via FHE! (Informal)

Add another FHE

CRS

𝑠𝑘!, 𝑠𝑘"

𝐶𝑇!
𝜋! ℎ!

FHE!
𝐶

FHE"
𝐶′

𝜋" ℎ"

𝐶𝑇"

Puncturing Argument, via FHE! (Informal)

Add another FHE

CRS

𝑠𝑘!, 𝑠𝑘"

𝐶𝑇!
𝜋! ℎ!

FHE!
𝐶

FHE"
𝐶′

𝜋" ℎ"

𝐶𝑇"

If 𝐶 and 𝐶′ are almost the same except for a functionality equivalent O(log n) sub-ckt,
then Dec 𝑠𝑘&, 𝐶𝑇& = 1 implies Dec 𝑠𝑘', 𝐶𝑇' = 1, using poly-secure BARG.

Puncturing Argument

Proving Soundness via Puncturing Argument

…

Proving Soundness via Puncturing Argument

…

Poly-size Extended Frege proof of 𝑅 𝑥,𝑤 = 0
[JJ22]

Proving Soundness via Puncturing Argument

𝐶! 𝐶" 𝐶- 𝐶./01

…
𝑅(𝑥,⋅) 0

Poly-size Extended Frege proof of 𝑅 𝑥,𝑤 = 0
[JJ22]

Proving Soundness via Puncturing Argument

𝐶! 𝐶" 𝐶- 𝐶./01

…
𝑅(𝑥,⋅) 0

Poly-size Extended Frege proof of 𝑅 𝑥,𝑤 = 0
[JJ22]

𝐶!FHE! 𝐶"FHE4

1st Hybrid

Proving Soundness via Puncturing Argument

𝐶! 𝐶" 𝐶- 𝐶./01

…
𝑅(𝑥,⋅) 0

Poly-size Extended Frege proof of 𝑅 𝑥,𝑤 = 0
[JJ22]

𝐶!FHE! 𝐶"FHE4

1st Hybrid

Proving Soundness via Puncturing Argument

𝐶! 𝐶" 𝐶- 𝐶./01

…
𝑅(𝑥,⋅) 0

Poly-size Extended Frege proof of 𝑅 𝑥,𝑤 = 0
[JJ22]

1

𝐶!FHE! 𝐶"FHE4

1st Hybrid

Proving Soundness via Puncturing Argument

…

Poly-size Extended Frege proof of 𝑅 𝑥,𝑤 = 0
[JJ22]

1 1

Puncturing Argument

𝐶!FHE! 𝐶"FHE4

1st Hybrid

Proving Soundness via Puncturing Argument

…

Poly-size Extended Frege proof of 𝑅 𝑥,𝑤 = 0
[JJ22]

1

FHE! semantic security

1

Puncturing Argument

𝐶!FHE! 𝐶"FHE4

1st Hybrid

Proving Soundness via Puncturing Argument

…

Poly-size Extended Frege proof of 𝑅 𝑥,𝑤 = 0
[JJ22]

1

𝐶-FHE! 𝐶"FHE4

1

2nd Hybrid

FHE! semantic security

1

Puncturing Argument

𝐶!FHE! 𝐶"FHE4

1st Hybrid

Proving Soundness via Puncturing Argument

…

Poly-size Extended Frege proof of 𝑅 𝑥,𝑤 = 0
[JJ22]

1

𝐶-FHE! 𝐶"FHE4

1

2nd Hybrid

FHE! semantic security

1

Puncturing Argument Puncturing Argument

𝐶!FHE! 𝐶"FHE4

1st Hybrid

Proving Soundness via Puncturing Argument

…

Poly-size Extended Frege proof of 𝑅 𝑥,𝑤 = 0
[JJ22]

1

𝐶-FHE! 𝐶"FHE4

1

2nd Hybrid

1

FHE! semantic security

1

Puncturing Argument Puncturing Argument

𝐶!FHE! 𝐶"FHE4

1st Hybrid

Proving Soundness via Puncturing Argument

…

Poly-size Extended Frege proof of 𝑅 𝑥,𝑤 = 0
[JJ22]

1
…

𝐶-FHE! 𝐶"FHE4

1

2nd Hybrid

1

FHE! semantic security

1

Puncturing Argument Puncturing Argument

𝐶!FHE! 𝐶"FHE4

1st Hybrid

Proving Soundness via Puncturing Argument

…

Poly-size Extended Frege proof of 𝑅 𝑥,𝑤 = 0
[JJ22]

1
…

𝐶-FHE! 𝐶"FHE4

1

2nd Hybrid

1

FHE! 0FHE4

1

poly-th Hybrid

1

FHE! semantic security

1

Puncturing Argument Puncturing Argument

𝐶!FHE! 𝐶"FHE4

1st Hybrid

Proving Soundness via Puncturing Argument

…

Poly-size Extended Frege proof of 𝑅 𝑥,𝑤 = 0
[JJ22]

1
…

𝐶-FHE! 𝐶"FHE4

1

2nd Hybrid

1

FHE! 0FHE4

1

poly-th Hybrid

1
Contradiction!

FHE! semantic security

1

Puncturing Argument Puncturing Argument

Rest of the Talk

• Proof of Puncturing Argument
• Achieving Public Verification & Random CRS
• Discussion

Rest of the Talk

• Proof of Puncturing Argument
• Achieving Public Verification & Random CRS
• Discussion

Recall: Somewhere Statistical Binding (SSB) Hash
[Hubacek-Wichs’15, Okamoto-Pietrzak-Waters-Wichs’15]

Recall: Somewhere Statistical Binding (SSB) Hash
[Hubacek-Wichs’15, Okamoto-Pietrzak-Waters-Wichs’15]

Hash Key: 𝐾 𝑆 ⊆ 𝑛 	 (Pseudorandom)

Recall: Somewhere Statistical Binding (SSB) Hash
[Hubacek-Wichs’15, Okamoto-Pietrzak-Waters-Wichs’15]

Hash Key: 𝐾 𝑆 ⊆ 𝑛 	 (Pseudorandom)

ℎ ← SSB(𝐾,𝑚#, 𝑚$, … ,𝑚%) ℎ ≈ |𝑆|

Recall: Somewhere Statistical Binding (SSB) Hash
[Hubacek-Wichs’15, Okamoto-Pietrzak-Waters-Wichs’15]

Hash Key: 𝐾 𝑆 ⊆ 𝑛 	 (Pseudorandom)

Extraction: 𝑚& ← Ext(td, ℎ)

ℎ ← SSB(𝐾,𝑚#, 𝑚$, … ,𝑚%) ℎ ≈ |𝑆|

Recall: Somewhere Statistical Binding (SSB) Hash
[Hubacek-Wichs’15, Okamoto-Pietrzak-Waters-Wichs’15]

Hash Key: 𝐾 𝑆 ⊆ 𝑛 	 (Pseudorandom)

Extraction: 𝑚& ← Ext(td, ℎ)

ℎ ← SSB(𝐾,𝑚#, 𝑚$, … ,𝑚%) ℎ ≈ |𝑆|

No-Signaling Property: for any two subsets 𝑆!, 𝑆4,

Recall: Somewhere Statistical Binding (SSB) Hash
[Hubacek-Wichs’15, Okamoto-Pietrzak-Waters-Wichs’15]

Hash Key: 𝐾 𝑆 ⊆ 𝑛 	 (Pseudorandom)

Extraction: 𝑚& ← Ext(td, ℎ)

ℎ ← SSB(𝐾,𝑚#, 𝑚$, … ,𝑚%) ℎ ≈ |𝑆|

No-Signaling Property: for any two subsets 𝑆!, 𝑆4,
𝐾(𝑆&) 𝐾(𝑆')

ℎ ℎ′

Recall: Somewhere Statistical Binding (SSB) Hash
[Hubacek-Wichs’15, Okamoto-Pietrzak-Waters-Wichs’15]

Hash Key: 𝐾 𝑆 ⊆ 𝑛 	 (Pseudorandom)

Extraction: 𝑚& ← Ext(td, ℎ)

ℎ ← SSB(𝐾,𝑚#, 𝑚$, … ,𝑚%) ℎ ≈ |𝑆|

No-Signaling Property: for any two subsets 𝑆!, 𝑆4,
𝐾(𝑆&) 𝐾(𝑆')

ℎ ℎ′

𝑚!'∩!(≈# 𝑚′!'∩!(

Recall: Puncturing Argument
CRS

FHE! FHE"

𝑠𝑘!, 𝑠𝑘"

𝐶𝑇!
𝜋! ℎ! 𝜋" ℎ"

𝐶 𝐶′

𝐶𝑇"

If 𝐶 and 𝐶′ are almost the same except for a functionality equivalent O(log n) sub-ckt,
then Dec 𝑠𝑘&, 𝐶𝑇& = 1 implies Dec 𝑠𝑘', 𝐶𝑇' = 1, assuming poly-secure BARG.

A Simplified View via Local Assignment Generator
[BHK17]

A Simplified View via Local Assignment Generator
[BHK17]

CRS = FHE! 𝐶(⋅)

𝐶𝑇! 𝜋 ℎ

𝐶

A Simplified View via Local Assignment Generator
[BHK17]

CRS = FHE! 𝐶(⋅)

𝐶𝑇! 𝜋 ℎ

𝐶

A Simplified View via Local Assignment Generator
[BHK17]

CRS = FHE! 𝐶(⋅)

𝐶𝑇! 𝜋 ℎ

Local Assignment Generator: Gen 𝑆 ≔	FHE!. Dec 𝑠𝑘, Ext td, ℎ

𝐶

A Simplified View via Local Assignment Generator
[BHK17]

CRS = FHE! 𝐶(⋅)

𝐶𝑇! 𝜋 ℎ

Local Assignment Generator: Gen 𝑆 ≔	FHE!. Dec 𝑠𝑘, Ext td, ℎ

𝑆: Small
(O(log n))

𝐶

A Simplified View via Local Assignment Generator
[BHK17]

CRS = FHE! 𝐶(⋅)

𝐶𝑇! 𝜋 ℎ

Local Assignment Generator: Gen 𝑆 ≔	FHE!. Dec 𝑠𝑘, Ext td, ℎ

𝑆: Small
(O(log n))

• No-Signaling (from No-Signaling property of SSB)
• Extracted wire values satisfy the gates in 𝑆 (via Soundness of BARGs)

Properties of Gen

Puncturing Argument, Rephrased

𝐶

𝐺𝑒𝑛!

𝐶′

𝐺𝑒𝑛"

Puncturing Argument, Rephrased

𝐶

𝐺𝑒𝑛!

𝐶′

𝐺𝑒𝑛"

Puncturing Argument, Rephrased

𝐶

𝐺𝑒𝑛!

𝐶′

𝐺𝑒𝑛"

Extracted output wire = 1

Puncturing Argument, Rephrased

𝐶

𝐺𝑒𝑛!

𝐶′

𝐺𝑒𝑛"

Extracted output wire = 1 ⇒

Puncturing Argument, Rephrased

𝐶

𝐺𝑒𝑛!

𝐶′

𝐺𝑒𝑛"

Extracted output wire = 1 Extracted output wire = 1⇒

Puncturing Argument, Rephrased

𝐶

𝐺𝑒𝑛!

𝐶′

𝐺𝑒𝑛"

Extracted output wire = 1 Extracted output wire = 1
We want to prove

⇒

Blueprint of the Proof

𝐺𝑒𝑛! 𝐺𝑒𝑛"

Blueprint of the Proof

𝐺𝑒𝑛! 𝐺𝑒𝑛"

Blueprint of the Proof

𝐺𝑒𝑛! 𝐺𝑒𝑛"
1. The corresponding wire values “below” the sub-circuits are the same

Blueprint of the Proof

2. Sub-circuits are computed correctly

𝐺𝑒𝑛! 𝐺𝑒𝑛"
1. The corresponding wire values “below” the sub-circuits are the same

Blueprint of the Proof

2. Sub-circuits are computed correctly

𝐺𝑒𝑛! 𝐺𝑒𝑛"
1. The corresponding wire values “below” the sub-circuits are the same

3. The corresponding wire values “above” the sub-circuits are the same.

Blueprint of the Proof

2. Sub-circuits are computed correctly

𝐺𝑒𝑛! 𝐺𝑒𝑛"
1. The corresponding wire values “below” the sub-circuits are the same

3. The corresponding wire values “above” the sub-circuits are the same.

(Local satisfiability)

Proof of Puncturing Argument: Blow the Subckt

𝐶 𝐶′

𝐺𝑒𝑛! 𝐺𝑒𝑛"

Proof of Puncturing Argument: Blow the Subckt

𝐶 𝐶′

Proof by induction from the bottom, i.e. input wires

𝐺𝑒𝑛! 𝐺𝑒𝑛"

The extracted wire values are the same?

Proof of Puncturing Argument: Blow the Subckt

𝐶 𝐶′

Proof by induction from the bottom, i.e. input wires

𝐺𝑒𝑛! 𝐺𝑒𝑛"

The extracted wire values are the same?

Proof of Puncturing Argument: Blow the Subckt

𝐶 𝐶′

Proof by induction from the bottom, i.e. input wires

𝐺𝑒𝑛! 𝐺𝑒𝑛"

Add Statements that BARG Proves: ∀𝑖, ∃ local openings of the 𝑖-th
input wire w.r.t. ℎ!, ℎ4, and the wire values 𝑤$, 𝑤$′ where 𝑤$ = 𝑤$′.

Moving Up in the Layers

𝐺𝑒𝑛! 𝐺𝑒𝑛"

𝐶 𝐶′

: extracted gate outputs in local assignment generators

Moving Up in the Layers

𝐺𝑒𝑛! 𝐺𝑒𝑛"

𝐶 𝐶′

Equal!

: extracted gate outputs in local assignment generators

Moving Up in the Layers

𝐺𝑒𝑛! 𝐺𝑒𝑛"

𝐶 𝐶′

Equal! Equal!

: extracted gate outputs in local assignment generators

Moving Up in the Layers

𝐺𝑒𝑛! 𝐺𝑒𝑛"

𝐶 𝐶′

Equal! Equal!

: extracted gate outputs in local assignment generators

Moving Up in the Layers

𝐺𝑒𝑛! 𝐺𝑒𝑛"

Equal!
𝐶 𝐶′

Equal! Equal!

: extracted gate outputs in local assignment generators

Moving Up in the Layers

𝐺𝑒𝑛! 𝐺𝑒𝑛"

Equal!
𝐶 𝐶′

: extracted gate outputs in local assignment generators

Moving Up in the Layers

𝐺𝑒𝑛! 𝐺𝑒𝑛"

Equal!
𝐶 𝐶′

: extracted gate outputs in local assignment generators

Moving Up in the Layers

𝐺𝑒𝑛! 𝐺𝑒𝑛"

Equal!
𝐶 𝐶′

: extracted gate outputs in local assignment generators

Moving Up in the Layers

𝐺𝑒𝑛! 𝐺𝑒𝑛"

Equal!

???

𝐶 𝐶′

: extracted gate outputs in local assignment generators

Moving Up in the Layers

𝐺𝑒𝑛! 𝐺𝑒𝑛"

Equal!

???

𝐶 𝐶′

: extracted gate outputs in local assignment generators

We need to extract their children first…
and the children of their children first…

Abstracting as a Pebbling Game

Abstracting as a Pebbling Game

the extracted gates in
local assignment generator

Pebbles:

Abstracting as a Pebbling Game

the extracted gates in
local assignment generator

Pebbles:

Rules:
• Place a pebble at an input wire
• Place a pebble if both children is pebbled
• Free to delete a pebble

Abstracting as a Pebbling Game

the extracted gates in
local assignment generator

Pebbles:

Rules:
• Place a pebble at an input wire
• Place a pebble if both children is pebbled
• Free to delete a pebble

Abstracting as a Pebbling Game

the extracted gates in
local assignment generator

Pebbles:

Rules:
• Place a pebble at an input wire
• Place a pebble if both children is pebbled
• Free to delete a pebble

Abstracting as a Pebbling Game

the extracted gates in
local assignment generator

Pebbles:

Rules:
• Place a pebble at an input wire
• Place a pebble if both children is pebbled
• Free to delete a pebble

Abstracting as a Pebbling Game

the extracted gates in
local assignment generator

Pebbles:

Rules:
• Place a pebble at an input wire
• Place a pebble if both children is pebbled
• Free to delete a pebble

Seems need 2567'8 moves in general if we only have 𝑂(log 𝑛) pebbles

Abstracting as a Pebbling Game

the extracted gates in
local assignment generator

Pebbles:

Rules:
• Place a pebble at an input wire
• Place a pebble if both children is pebbled
• Free to delete a pebble

Seems need 2567'8 moves in general if we only have 𝑂(log 𝑛) pebbles

Reduction time: 2567'8! More efficient reduction?

Augmenting Ckts with
Collision-Resistance Hashes

𝐶 𝐶′

: extracted gate values in local assignment generators

Augmenting Ckts with
Collision-Resistance Hashes

𝐶 𝐶′

Merkle hash the gate values at each layer via Collision-Resistance Hash (CRHF)

: extracted gate values in local assignment generators

Augmenting Ckts with
Collision-Resistance Hashes

𝐶 𝐶′

Merkle hash the gate values at each layer via Collision-Resistance Hash (CRHF)

: extracted gate values in local assignment generators

Augmenting Ckts with
Collision-Resistance Hashes

𝐶 𝐶′

Merkle hash the gate values at each layer via Collision-Resistance Hash (CRHF)

: extracted gate values in local assignment generators

Augmenting Ckts with
Collision-Resistance Hashes

𝐶 𝐶′

Merkle hash the gate values at each layer via Collision-Resistance Hash (CRHF)

: extracted gate values in local assignment generators
Equal!

Augmenting Ckts with
Collision-Resistance Hashes

𝐶 𝐶′

Merkle hash the gate values at each layer via Collision-Resistance Hash (CRHF)

: extracted gate values in local assignment generators
Equal! Equal!

Augmenting Ckts with
Collision-Resistance Hashes

𝐶 𝐶′

Merkle hash the gate values at each layer via Collision-Resistance Hash (CRHF)

: extracted gate values in local assignment generators
Equal! Equal!

“Save” the progress here

Augmenting Ckts with
Collision-Resistance Hashes

𝐶 𝐶′

Merkle hash the gate values at each layer via Collision-Resistance Hash (CRHF)

: extracted gate values in local assignment generators

“Save” the progress here

Augmenting Ckts with
Collision-Resistance Hashes

𝐶 𝐶′

Merkle hash the gate values at each layer via Collision-Resistance Hash (CRHF)

: extracted gate values in local assignment generators

“Save” the progress here

The entire layer is “equal” ⟺ the roots of CRHF trees are “equal”.

Moving Up in the Layers

𝐶 𝐶′

Equal

: extracted gate values in local assignment generators

Moving Up in the Layers

𝐶 𝐶′

Equal

: extracted gate values in local assignment generators

Moving Up in the Layers

𝐶 𝐶′

Equal

: extracted gate values in local assignment generators

Moving Up in the Layers

𝐶 𝐶′

Equal

: extracted gate values in local assignment generators

Suppose the left child is the 2nd node in the layer

Moving Up in the Layers

𝐶 𝐶′

“Load” the saved progress from the roots
Equal

: extracted gate values in local assignment generators

Suppose the left child is the 2nd node in the layer

Moving Up in the Layers

𝐶 𝐶′

“Load” the saved progress from the roots
Equal

: extracted gate values in local assignment generators

Suppose the left child is the 2nd node in the layer

Moving Up in the Layers

𝐶 𝐶′

Equal! (via CRHF)

“Load” the saved progress from the roots
Equal

: extracted gate values in local assignment generators

Suppose the left child is the 2nd node in the layer

Save the Progress in the Middle of the Subckt

: extracted gate values in local assignment generators

Save the Progress in the Middle of the Subckt
Merkle-Hash the layer, but “puncture” the-root-to-leaf path for leaves in subcircuit,

and use the roots of remaining subtrees to save the “equality” progress so far.

: extracted gate values in local assignment generators

Save the Progress in the Middle of the Subckt
Merkle-Hash the layer, but “puncture” the-root-to-leaf path for leaves in subcircuit,

and use the roots of remaining subtrees to save the “equality” progress so far.

: extracted gate values in local assignment generators

Save the Progress in the Middle of the Subckt
Merkle-Hash the layer, but “puncture” the-root-to-leaf path for leaves in subcircuit,

and use the roots of remaining subtrees to save the “equality” progress so far.

: extracted gate values in local assignment generators

Save the Progress in the Middle of the Subckt
Merkle-Hash the layer, but “puncture” the-root-to-leaf path for leaves in subcircuit,

and use the roots of remaining subtrees to save the “equality” progress so far.

e.g. 3rd leaf is in the subcircuit

: extracted gate values in local assignment generators

Save the Progress in the Middle of the Subckt
Merkle-Hash the layer, but “puncture” the-root-to-leaf path for leaves in subcircuit,

and use the roots of remaining subtrees to save the “equality” progress so far.

e.g. 3rd leaf is in the subcircuit

Equal

: extracted gate values in local assignment generators

Save the Progress in the Middle of the Subckt
Merkle-Hash the layer, but “puncture” the-root-to-leaf path for leaves in subcircuit,

and use the roots of remaining subtrees to save the “equality” progress so far.

e.g. 3rd leaf is in the subcircuit

Equal Equal

: extracted gate values in local assignment generators

Finishing the Proof: “Above” the Subckts

: extracted gate values in local assignment generators

Finishing the Proof: “Above” the Subckts

: extracted gate values in local assignment generators

Left Child: an output wire of the subcircuit
Right Child: a wire outside of the subcircuit

A general gate:

Finishing the Proof: “Above” the Subckts

: extracted gate values in local assignment generators

Equality from local satisfiability
of the subckts

Left Child: an output wire of the subcircuit
Right Child: a wire outside of the subcircuit

A general gate:

Finishing the Proof: “Above” the Subckts

: extracted gate values in local assignment generators

Load the “equality” from Merkle-Hash trees

Equality from local satisfiability
of the subckts

Left Child: an output wire of the subcircuit
Right Child: a wire outside of the subcircuit

A general gate:

Rest of the Talk

• Achieving Public Verification & Random CRS
• Discussion

Construction So Far
CRS

𝐶! 𝐶"FHE! FHE"

𝑠𝑘!, 𝑠𝑘"

𝐶𝑇!
𝜋! ℎ! 𝜋" ℎ"

𝑅(𝑥,⋅)

𝐶𝑇"

Construction So Far
CRS

𝐶! 𝐶"FHE! FHE"

𝑠𝑘!, 𝑠𝑘"

𝐶𝑇!
𝜋! ℎ! 𝜋" ℎ"

𝑅(𝑥,⋅)

𝐶𝑇"

• CRS depends on 𝑥
• Designated Verifier

Construction So Far
CRS

𝐶! 𝐶"FHE! FHE"

𝑠𝑘!, 𝑠𝑘"

𝐶𝑇!
𝜋! ℎ! 𝜋" ℎ"

𝑅(𝑥,⋅)

𝐶𝑇"

• CRS depends on 𝑥
• Designated Verifier

Public Verification: give out 𝑠𝑘$?

Construction So Far
CRS

𝐶! 𝐶"FHE! FHE"

𝑠𝑘!, 𝑠𝑘"

𝐶𝑇!
𝜋! ℎ! 𝜋" ℎ"

𝑅(𝑥,⋅)

𝐶𝑇"

• CRS depends on 𝑥
• Designated Verifier

Public Verification: give out 𝑠𝑘$?
We don’t need to encrypt 𝑅(𝑥,⋅)!

Achieving Public Verification
CRS

FHE! FHE"

𝐶𝑇!

𝜋! ℎ! 𝜋" ℎ"

𝐶𝑇"

Random CRS!

Achieving Public Verification
CRS

FHE! FHE"

𝐶𝑇!

𝜋! ℎ! 𝜋" ℎ"

𝐶𝑇"

𝑤

𝑅(𝑥,⋅)

Random CRS!

Achieving Public Verification
CRS

FHE! FHE"

𝐶𝑇!

𝜋! ℎ! 𝜋" ℎ"

𝐶𝑇"

𝜋3 ℎ3
𝑤

• ℎ9 : Merkle-Hash of the wires in 𝑅(𝑥,⋅)
• 𝜋9 : BARGs for “each gate in 𝑅(𝑥,⋅) is computed correctly”.

𝑅(𝑥,⋅)

Random CRS!

Achieving Public Verification
CRS

FHE! FHE"

Publicly Verify 𝜋3 , 𝜋!, 𝜋"

𝐶𝑇!

𝜋! ℎ! 𝜋" ℎ"

𝐶𝑇"

𝜋3 ℎ3
𝑤

• ℎ9 : Merkle-Hash of the wires in 𝑅(𝑥,⋅)
• 𝜋9 : BARGs for “each gate in 𝑅(𝑥,⋅) is computed correctly”.

𝑅(𝑥,⋅)

Random CRS!

Discussion

(Perspective on this line of ‘logic-based’ approach)

Recall: Duality between Logic and Computation
Proof Complexity Computational Complexity

Extended Frege

Frege

Circuits

Formulas

Poly-size Extended Frege Poly-size Circuits

Cook’s Theory PV Poly-time Turing Machines
… …

Logic: A Forgotten Structure in Cryptography?

Logic: A Forgotten Structure in Cryptography?

Non-black-box use of
functions, i.e. use their circuits

Logic: A Forgotten Structure in Cryptography?

Non-black-box use of
functions, i.e. use their circuits

many examples:
FHE, garbled circuits, arithmetization,

...

Logic: A Forgotten Structure in Cryptography?

Non-black-box use of
functions, i.e. use their circuits

“Non-black-box use” of
mathematical claims

many examples:
FHE, garbled circuits, arithmetization,

...

Logic: A Forgotten Structure in Cryptography?

Non-black-box use of
functions, i.e. use their circuits

“Non-black-box use” of
mathematical claims

• iO via math proofs of
equivalence [JJ’22]

• SNARGs via propositional logic
[This work]

• ...

many examples:
FHE, garbled circuits, arithmetization,

...

Logic: A Forgotten Structure in Cryptography?

Non-black-box use of
functions, i.e. use their circuits

“Non-black-box use” of
mathematical claims

• iO via math proofs of
equivalence [JJ’22]

• SNARGs via propositional logic
[This work]

• ...

many examples:
FHE, garbled circuits, arithmetization,

...

Logic: A Forgotten Structure in Cryptography?

Non-black-box use of
functions, i.e. use their circuits

“Non-black-box use” of
mathematical claims

• iO via math proofs of
equivalence [JJ’22]

• SNARGs via propositional logic
[This work]

• ...

many examples:
FHE, garbled circuits, arithmetization,

...

Logic: A Forgotten Structure in Cryptography?

Non-black-box use of
functions, i.e. use their circuits

“Non-black-box use” of
mathematical claims

• iO via math proofs of
equivalence [JJ’22]

• SNARGs via propositional logic
[This work]

• ...

many examples:
FHE, garbled circuits, arithmetization,

...

Is non-black-box techniques necessary?

Logic: A Forgotten Structure in Cryptography?

Non-black-box use of
functions, i.e. use their circuits

“Non-black-box use” of
mathematical claims

Black-box separations

• iO via math proofs of
equivalence [JJ’22]

• SNARGs via propositional logic
[This work]

• ...

many examples:
FHE, garbled circuits, arithmetization,

...

Is non-black-box techniques necessary?

Logic: A Forgotten Structure in Cryptography?

Non-black-box use of
functions, i.e. use their circuits

“Non-black-box use” of
mathematical claims

Black-box separationsImpossibility?

• iO via math proofs of
equivalence [JJ’22]

• SNARGs via propositional logic
[This work]

• ...

many examples:
FHE, garbled circuits, arithmetization,

...

Is non-black-box techniques necessary?

Thank you!

Q & A

