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CRS CRS
“𝑥 ∈ 𝐿”

≪ 𝑤

• Soundness: for any 𝑥 ∉ 𝐿, and any efficient adversary, the cheating 
proof should be rejected.

Poly-time adversary

• Completeness: ∀𝑥 ∈ 𝐿, the honestly generated proof is accepted.
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Random Oracle Model, or
Knowledge-type Assumptions
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• P [KRR14, CJJ21, KVZ21]
• Bounded-space Non-

deterministic comp. [KVZ21]
• Monotone policy Batch-NP 

[BBKLP23]

We don’t know any truly succinct SNARGs from standard assumptions!

• NP [SW14, WW24] 
• Languages that have a “mathematical proof of 

non-membership” [JJ22]

“Truly succinct”

Assumption: require indistinguishability obfuscation 
(iO)
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(Recall: truly succinct means proof size ≪ log	𝑇 for any 
NP languages that require time 𝑇 to decide.)
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Recall: Our Results (I)
SNARGs from learning with errors (LWE) for NP languages that 

have a poly-size propositional proof of non-membership, where

• Proof size = poly(𝜆)

• CRS size = poly(prop. proof length, 𝜆)

Why should I care about 
propositional proofs?

(a cryptographer)
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prove co-NP statements?
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used to decide the language?

(Computational complexity)

Example languages?
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𝐿 = { 𝑔, 𝑔(, 𝑔), 𝑔() } over 𝑛-bits standard group.

• Proof size = poly(𝜆), independent of 𝑛!

• CRS size = poly(𝜆, 𝑛)

Fully Succinct: 𝐿 requires 2%('!/#) time to decide, but 
SNARG proof size ≪ 𝑛.
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Our Results (II)
SNARGs from 𝑇-hardness of (LWE) for NP languages that have a 

propositional proof of non-membership of space 𝑆 and (possibly super-

poly) length 𝑇, where

• |Proof| = poly(log	𝑇, 𝜆)

• |CRS| = poly(𝑆, log	𝑇, 𝜆) 

“Dual” of SNARGs for bounded space non-
deterministic computation NTISP(𝑆, 𝑇)

(Proof and CRS size = poly(𝑆, log	𝑇))
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• Preserve Functionality: 𝑖𝑂(𝐶) preserves the functionality of 𝐶

• Indistinguishability Security:  for any 𝐶*, 𝐶! that compute the same function, 

𝑖𝑂 𝐶* ≈# 𝑖𝑂 	𝐶!  
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Intuition for Soundness: ∀	𝑥∗ ∉ 𝐿, (𝑃𝐾 never outputs 𝑃𝑅𝐹" 𝑥∗
⇒ 	𝑖𝑂 hides 𝑃𝑅𝐹" 𝑥∗

Can we instantiate this template from LWE?
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Towards SNARGs from LWE: Replace iO with FHE
(FHE: fully homomorphic encryption)

CRS

FHE 𝐶(𝑥,⋅)

𝑠𝑘Eval. on 𝑤 FHE 𝐶 𝑥,𝑤
Dec and check 
whether it’s 1

• CRS depends on 𝑥
• Designated Verifier

(will solve later)

𝜋

𝜋 proves “FHE 𝐶 𝑥,𝑤  is computed correctly from some 𝑤.”

We need a SNARG!
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Applying BARGs
CRS = FHE 𝐶(𝑥,⋅)

FHE 𝐶 𝑥,𝑤 𝜋 ℎ

Merkle hash 
ciphertexts of wires

(consistency) ℎ
𝜋 proves “∀ gate 𝑔, ∃ local openings 𝜌/, 𝜌0, 𝜌1 of 

𝑐𝑡/, 𝑐𝑡0, 𝑐𝑡1	w.r.t. ℎ, and 𝑐𝑡1 = 𝑔(𝑐𝑡/, 𝑐𝑡0)” using BARG.

𝑔

𝑟

𝑜
∧

𝑙

homomorphic eval on 𝑤

How to Prove the Soundness?
BARG ⇒ only part of the evaluation is correct 
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Reduction LWE
Break

if 𝑥 ∉ 𝐿

(Soundness)

Reduction seems need to “tell” whether 𝑥 ∉ 𝐿 or 𝑥 ∈ 𝐿.
(Gentry-Wichs: formalize this intuition (with caveat))

If the reduction runs in 2|3|-time ⇒ FHE security parameters ≥ |𝑤|
Not Succinct!

Reduction LWE
NOT break

if 𝑥 ∈ 𝐿

(poly-time reduction?)
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Adjacent pair of circuits are almost the same, 
except for a O(log n) size sub-circuits of the same functionality.
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Efficient Reduction via 
Logical Structure of the Language [JJ’22]

Poly-size Extended Frege proof of 𝑅 𝑥,⋅ = 0

…
𝐶! 𝐶4 𝐶- 0

Poly. number of hybrids

≈𝒄≈𝒄

A “Puncturing Argument” with 
quasi-polynomial time reduction

⇒ Total reduction time = quasi-poly!JJ’22 realizes “puncturing 
argument” using iO



Our Approach
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Puncturing Argument, via FHE! (Informal)

Add another FHE

CRS

𝑠𝑘!, 𝑠𝑘"

𝐶𝑇!
𝜋! ℎ!

FHE!
𝐶

FHE"
𝐶′

𝜋" ℎ"

𝐶𝑇"

If 𝐶 and 𝐶′ are almost the same except for a functionality equivalent O(log n) sub-ckt,
then Dec 𝑠𝑘&, 𝐶𝑇& = 1 implies Dec 𝑠𝑘', 𝐶𝑇' = 1, using poly-secure BARG.

Puncturing Argument
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Recall: Somewhere Statistical Binding (SSB) Hash
[Hubacek-Wichs’15, Okamoto-Pietrzak-Waters-Wichs’15]

Hash Key:  𝐾 𝑆 ⊆ 𝑛 	 (Pseudorandom)

Extraction: 𝑚& ← Ext(td, ℎ)

ℎ ← SSB(𝐾,𝑚#, 𝑚$, … ,𝑚%) ℎ ≈ |𝑆|

No-Signaling Property:  for any two subsets 𝑆!, 𝑆4, 
𝐾(𝑆&) 𝐾(𝑆')

ℎ ℎ′

𝑚!'∩!( ≈# 𝑚′!'∩!(



Recall: Puncturing Argument
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If 𝐶 and 𝐶′ are almost the same except for a functionality equivalent O(log n) sub-ckt,
then Dec 𝑠𝑘&, 𝐶𝑇& = 1 implies Dec 𝑠𝑘', 𝐶𝑇' = 1, assuming poly-secure BARG.
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A Simplified View via Local Assignment Generator
[BHK17]

CRS = FHE! 𝐶(⋅)

𝐶𝑇! 𝜋 ℎ

Local Assignment Generator: Gen 𝑆 ≔	FHE!. Dec 𝑠𝑘, Ext td, ℎ

𝑆: Small
(O(log n))

• No-Signaling (from No-Signaling property of SSB)
• Extracted wire values satisfy the gates in 𝑆 (via Soundness of BARGs)

Properties of Gen
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Puncturing Argument, Rephrased

𝐶

𝐺𝑒𝑛!

𝐶′

𝐺𝑒𝑛"

Extracted output wire = 1 Extracted output wire = 1
We want to prove

⇒
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Blueprint of the Proof

2. Sub-circuits are computed correctly

𝐺𝑒𝑛! 𝐺𝑒𝑛"
1. The corresponding wire values  “below” the sub-circuits are the same

3. The corresponding wire values “above” the sub-circuits are the same.

(Local satisfiability)
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Proof of Puncturing Argument: Blow the Subckt

𝐶 𝐶′

Proof by induction from the bottom, i.e. input wires

𝐺𝑒𝑛! 𝐺𝑒𝑛"

Add Statements that BARG Proves: ∀𝑖, ∃ local openings of the 𝑖-th 
input wire w.r.t. ℎ!, ℎ4, and the wire values 𝑤$, 𝑤$′ where 𝑤$ = 𝑤$′.
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Moving Up in the Layers

𝐺𝑒𝑛! 𝐺𝑒𝑛"

Equal!

???

𝐶 𝐶′

: extracted gate outputs in local assignment generators

We need to extract their children first…
and the children of their children first…
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Abstracting as a Pebbling Game

the extracted gates in 
local assignment generator

Pebbles:

Rules:
• Place a pebble at an input wire
• Place a pebble if both children is pebbled 
• Free to delete a pebble 

Seems need 2567'8 moves in general if we only have 𝑂(log 𝑛) pebbles

Reduction time: 2567'8! More efficient reduction?
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Augmenting Ckts with 
Collision-Resistance Hashes

𝐶 𝐶′

Merkle hash the gate values at each layer via Collision-Resistance Hash (CRHF)

: extracted gate values  in local assignment generators

“Save” the progress here

The entire layer is “equal” ⟺ the roots of CRHF trees are “equal”.
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Moving Up in the Layers

𝐶 𝐶′

Equal! (via CRHF)

“Load” the saved progress from the roots
Equal

: extracted gate values in local assignment generators

Suppose the left child is the 2nd node in the layer
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Save the Progress in the Middle of the Subckt
Merkle-Hash the layer, but “puncture” the-root-to-leaf path for leaves in subcircuit,

and use the roots of remaining subtrees to save the “equality” progress so far.

e.g. 3rd leaf is in the subcircuit

Equal Equal

: extracted gate values in local assignment generators
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Finishing the Proof: “Above” the Subckts

: extracted gate values in local assignment generators

Load the “equality” from Merkle-Hash trees

Equality from local satisfiability
of the subckts

Left Child: an output wire of the subcircuit
Right Child: a wire outside of the subcircuit

A general gate:



Rest of the Talk

• Achieving Public Verification & Random CRS
• Discussion
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CRS
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𝐶𝑇!
𝜋! ℎ! 𝜋" ℎ"

𝑅(𝑥,⋅)

𝐶𝑇"

• CRS depends on 𝑥
• Designated Verifier

Public Verification: give out 𝑠𝑘$?
We don’t need to encrypt 𝑅(𝑥,⋅)!
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Achieving Public Verification
CRS

FHE! FHE"

Publicly Verify 𝜋3 , 𝜋!, 𝜋"

𝐶𝑇!

𝜋! ℎ! 𝜋" ℎ"

𝐶𝑇"

𝜋3 ℎ3
𝑤

• ℎ9 : Merkle-Hash of the wires in 𝑅(𝑥,⋅) 
• 𝜋9 : BARGs for “each gate in 𝑅(𝑥,⋅) is computed correctly”.

𝑅(𝑥,⋅)

Random CRS!



Discussion

(Perspective on this line of ‘logic-based’ approach)



Recall: Duality between Logic and Computation
Proof Complexity Computational Complexity

Extended Frege

Frege

Circuits

Formulas

Poly-size Extended Frege Poly-size Circuits

Cook’s Theory PV Poly-time Turing Machines
… …
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Logic: A Forgotten Structure in Cryptography?

Non-black-box use of
functions, i.e. use their circuits

“Non-black-box use” of 
mathematical claims

Black-box separationsImpossibility?

• iO via math proofs of 
equivalence [JJ’22]

• SNARGs via propositional logic 
[This work]

• ...

many examples: 
FHE, garbled circuits, arithmetization, 

...

Is non-black-box techniques necessary?



Thank you!

Q & A


