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Indistinguishability Obfuscation (iO)

• Preserve Functionality:

• Indistinguishability Security:  for any 𝐶", 𝐶#

𝑖𝑂 1! , 𝐶 → 𝐶′, (𝜆: Security parameter)𝑖𝑂: obfuscator

∀ 𝑥, 𝐶′ 𝑥 = 𝐶(𝑥)

∀ 𝑥 𝐶"(𝑥) = 𝐶# 𝑥 ,    𝑖𝑂 1! , 𝐶" ≈$ 𝑖𝑂 1! , 𝐶#

𝐶: Program (Circuit/Turing Machine)
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Indistinguishability Security, as a Game

𝐶", 𝐶#

𝑖𝑂(1! , 𝐶%)

𝑏& ∈ {0,1}

𝑏 ← {0,1}

If ∀𝒙 𝑪𝟎 𝒙 = 𝑪𝟏 𝒙 ∧
𝑏 = 𝑏′, adversary wins

n.u.
Probabilistic 

Poly.-time

Non-Falsifiability
The challenger (judger) is inefficient. 

(2|*|-time)
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Good Assumptions are Falsifiable

𝑁 = 𝑝 ⋅ 𝑞

𝑝&, 𝑞′

𝑝, 𝑞 ← 𝑃𝑟𝑖𝑚𝑒𝑠

If 𝑁 = 𝑝& ⋅ 𝑞′, 
adversary wins

Example: Factoring

Falsifiable
The challenger is poly-time
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• A long line of works:
[Garg-Gentry-Halevi-Raykova-Sahai-Waters’13][Pass-Seth-Telang’14]
[Gentry-Lewko-Sahai-Waters’15][Ananth-Jain’15][Bitansky-Vaikuntanathan’15]
[Lin’16][Lin-Vaikuntanathan’16][Lin-Pass-Karn Seth-Telang’16]
[Garg-Miles-Mukherjee-Sahai-Srinivasan-Zhandry’16][Ananth-Sahai’17][Lin’17]
[Lin-Tessaro’17][Agrawal’19][Jain-Lin-Matt-Sahai’19][Brakerski-Dottling-Malavolta’20]…
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• iO from Well-Founded Assumptions [Jain-Lin-Sahai’20]
Based on Sub-exponential Security of Learning with Errors, and Learning Parity 
with Noise and more…

• A long line of works:
[Garg-Gentry-Halevi-Raykova-Sahai-Waters’13][Pass-Seth-Telang’14]
[Gentry-Lewko-Sahai-Waters’15][Ananth-Jain’15][Bitansky-Vaikuntanathan’15]
[Lin’16][Lin-Vaikuntanathan’16][Lin-Pass-Karn Seth-Telang’16]
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Sub-exponential Security

For any adversary that runs in 2!!-time (0 < 𝑐 < 1),
it can only break the Assumption 𝑃 of size 𝜆 with negligible probability.

(𝑃=Learning with Errors, Learning party with Noise, …)

Of an Assumption 𝑃
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Adv. for iO
2|"#$%&|-time Adv. for P

Good
Assumption 𝑃

(Falsifiable)

Assume 2!$-Security & set 2!$ > 2|+,-./| 𝒊𝒏𝒑𝒖𝒕 < 𝝀𝒄
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2|"#$%&|-Security Loss is Bad

iO for Turing Machines: 𝑀: a Turing Machine, 𝑖𝑂 1! , 𝑀 → 𝑀′

Ideal: 𝑀′ works for unbounded input-length

Reality:
Input length is a-priori bounded (since 𝑖𝑛𝑝𝑢𝑡 < 𝜆$)

[Bitansky-Garg-Lin-Pass-Telang’15][Canetti-Holmgren-Jain-
Vaikuntanathan’15][Koppula-Lewko-Waters’15]…



iO: the “Central Hub” [Sahai-Waters’13]

iO

Witness
EncryptionNIZKs/SNARGs

Deniable
Encryption

…

Nash Equilibrium

Software 
watermarking
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Witness Encryption
NIZKs/SNARGs

…

2|"#$%&|-Security Loss “Spreads”

Large CRS
Large ciphetext



Question: Can we build iO with a security loss
independent of the input length? 
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Is 2|"#$%&|-Loss Inherent? (folklore)

Fake Adv. for iO

Assumption 𝑃𝐶"∗, 𝐶#∗

If 𝐶!∗, 𝐶"∗ differ at some 𝑥∗, then reduction shouldn’t break 𝑃.
Otherwise, 𝑃 is broken unconditionally.

Reduction can’t tell, unless it checks at 𝑥∗
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If 𝑥 ∉ 𝐿, any cheating proof should be rejected 

Broader Perspective

[Gentry-Wichs’10] impossibility for SNARGs

Soundness:

Example: Non-Interactive Proofs

“𝑥 ∈ 𝐿”

(for 𝐿 ∈ 𝑁𝑃)

Non-Falsifiable!

Such non-falsifiability appears in many other places in crypto
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Reduction checks 𝐶" 𝑥∗ = 𝐶#(𝑥∗) for every 𝑥∗
with 2|*∗|-loss

Previous Works: 

This Work: Leverage math. proofs of “∀𝑥 𝐶" 𝑥 = 𝐶#(𝑥)”
to avoid the 2|*|-time check

“∀𝑥 𝐶" 𝑥 = 𝐶#(𝑥)” can be decided in P
[Garg-Pandey-Srinivasan’16, Garg-Srinivasan’16, 

Garg-Pandey-Srinivasan-Zhandry’17]
[Liu-Zhandry’17]

iO



Why Such Math. Proofs Exist?
When iO is used in the security proof of other applications:
…
• Construct 𝐶!, 𝐶"
• Write a math. proof for ∀ 𝑥 𝐶!(𝑥) = 𝐶"(𝑥)
• Apply iO security to derive 𝑖𝑂 𝐶! ≈$ 𝑖𝑂(𝐶")
…

The proof must be “short” (length ≪ 2 * )
Otherwise, we (human brain) can’t understand it.



𝑂 with security loss independent of |𝑖𝑛𝑝𝑢𝑡| for any ckts 𝐶!
#
! , 𝐶!

2
!

where 𝐶!
# 𝑥 ↔ 𝐶!

2 𝑥 have poly-size proofs in Extended Frege systems.

Our Results I (for Propositional Logic)



Extended Frege System (ℰℱ)
• Variables: 𝑝, 𝑞, 𝑟, …
• Formulas: 𝑝 → 𝑟, 𝑝 ∧ 𝑞, ¬𝑝,…
• Axioms:

𝑝 → (𝑞 → 𝑝)
(𝑝 → 𝑞 → 𝑟 → ( 𝑝 → 𝑞 → 𝑝 → 𝑟 )

𝑝 → ¬¬𝑝
• Inference Rule:

𝑝, 𝑝 → 𝑞 ⊢ 𝑞
• Extension Rule:

𝑒 ↔ 𝜙
(assign a new variable 𝑒 to an existing formula 𝜙)



𝑖𝑂 for any unbounded-input Turing machines 𝑀#, 𝑀2,
with ⊢34 𝑀# 𝑥 = 𝑀2(𝑥).

Our Results II (for Cook’s Theory PV)

Assumptions: sub-exponential security of LWE & iO for circuits.



Cook’s Theory PV [Cook’75]

Terms: 𝑓 𝑥 , 𝑔 𝑥 , ℎ 𝑥#, 𝑥2 , …
Lines are Equations: 𝑓 𝑥 = ℎ 𝑥 , 𝑓 𝑥#, 𝑔 𝑥2 = ℎ 𝑥#, 𝑥2 , …
Allow definition of any polynomial-time functions, e.g.

§ Arithmetic: +,−,×,÷,≤,<, ⋅ , 𝑚𝑜𝑑,…
§ Logic Symbols: →,¬,∧, …

“Poly-time Reasoning”



Relation Between PV and ℰℱ
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(Non-uniform) (Uniform)

Propositional Translation
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Relation Between PV and ℰℱ

Turing MachinesCircuits

Theory PVPoly-size Proofs in
𝓔𝓕

(Non-uniform) (Uniform)

Propositional Translation
[Cook’75]
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What Can PV Prove?

• Correctness of “natural” poly-time 
algorithms
• Linear Algebra:

Matrix properties,
Determinants,
Cayley-Hamilton Theorem,
...

• Complexity Theorems:
Cook-Levin theorem, PCP theorem,
…

This work:
• Many crypto algorithms are “natural”, e.g.

ElGamal Encryption,
Regev’s Encryption
Commitments,
Puncturable PRFs
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Limitation of PV

• Fermat’s Little Theorem

• Correctness of the algorithm that decides Primes

(Both from Witnessing Theorem) 

(Assuming Factoring is hard)



How to leverage math. proofs?

(An overview)
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Key Observation: Math. Proofs are “Local”

Example: Proof of 𝐴 → 𝐴 in EF

e.g., in ℰℱ, Each line either follows from an axiom or modus ponens
(𝑝, 𝑝 → 𝑞 ⊢ 𝑞)

Truth of each line follows from 𝑂 1 previous lines 

How do we leverage localness?
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“Local” Equivalence for Circuits

𝐶: : 𝐶′



𝐶 and 𝐶′ are 𝛿-equivalent, if 𝐶 and 𝐶′are almost the same,
except for a functionality equivalent sub-circuit of size 𝑂(log 𝑛)

“Local” Equivalence for Circuits

≡

𝐶: : 𝐶′
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Sub-Circuits: Defined as Subsets of Gates

∧

∨ ¬

∧

¬

∨
…

Input

Output

Main Body:
Sub-graph

Directed Acyclic Graph Sub-Circuit

How does 𝛿-Equivalence 
relate to proofs?



ℰℱ-Proofs imply 𝛿-Equivalence

𝜃#, 𝜃2, … , 𝜃ℓ : ℰℱ-proof of 𝐶" 𝑥 ↔ 𝐶#(𝑥)

𝐶" = 𝐶(#) 𝐶(2) 𝐶(8) 𝐶(ℓ&) = 𝐶#

…

𝐶(+)and 𝐶(+9#)are 𝛿-equivalent

(localness)
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Focus on 𝛿-Equivalent Ckts

Total Security Loss = ℓ′ ⋅Loss of 𝛿𝑖𝑂 (ℓ& = 𝑝𝑜𝑙𝑦)

𝛿𝑖𝑂(𝐶(#)) 𝛿𝑖𝑂(𝐶 2 ) 𝛿𝑖𝑂(𝐶(8)) 𝛿𝑖𝑂(𝐶(ℓ&))≈ ≈ …

If loss of 𝛿𝑖𝑂 is independent of |𝑖𝑛𝑝𝑢𝑡|, so is the total loss.

Assume iO for 𝛿-Equivalent Ckts exists: 𝛿𝑖𝑂

⇒ 𝛿𝑖𝑂 𝐶" ≈# 𝛿𝑖𝑂(𝐶$)
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Constructing 𝛿𝑖𝑂

Security loss is independent of 𝑖𝑛𝑝𝑢𝑡 , why?

∧

∨ ¬

“Gate-by-Gate” Obfuscation:
Obfuscate each gate separately

We can “cut” the obfuscated program!
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Security Proof for 𝛿𝑖𝑂

Check all inputs to Sub-ckt
Security Loss: 2|'()$*+ ,-.(+|

= 2/(123 -) = 𝑝𝑜𝑙𝑦!

𝐶:

𝐶&:

≈𝛿𝑖𝑂
⇐

≈

𝐶, 𝐶%: 𝛿-Equivalent 
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𝜃#, 𝜃2, … , 𝜃ℓ : ℰℱ-proof of 𝐶" 𝑥 ↔ 𝐶#(𝑥)

𝐶" = 𝐶(#) 𝐶(2) 𝐶(8) 𝐶(ℓ&) = 𝐶#

…

,

A sequence of incremental changes from 𝐶" to 𝐶#
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𝐶" 𝐶" 𝐶$

Output

Output Add gates of 𝐶", 
one gate at a time 
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𝐶' → 𝐶(, Stage I: “Grow” 𝐶(

𝐶" 𝐶" 𝐶$

Output

Output Add gates of 𝐶", 
one gate at a time 

𝜹-Equivalence: 
• We only add 1 gate at a time
• Gate we add doesn’t affect output

𝑥 𝑥 𝑥



𝐶' → 𝐶(, Stage II: “Grow” the Proof

𝐶" 𝐶$

∧

𝜃# 𝜃2
𝜃+

…

𝐶" 𝐶$

Add 𝜃+&𝑠 one-by-one

𝜹-Equivalence: 𝜃+ is from...
o Axiom: 𝜃+ a tautology, itself is the sub-ckt
o Modus Ponens: 𝑝 ∧ (𝑝 → 𝜃+) = 𝑝 ∧ 𝑝 → 𝜃+ ∧ 𝜃+

𝑝
𝑝 → 𝜃+



𝐶' → 𝐶(, Stage III: Switch the Output



𝐶' → 𝐶(, Stage III: Switch the Output

𝐶" 𝐶$

∧

𝜃# 𝜃2
𝜃ℓ

…𝑜# 𝑜2



𝐶' → 𝐶(, Stage III: Switch the Output

𝐶" 𝐶$

∧

𝜃# 𝜃2
𝜃ℓ

…𝑜# 𝑜2
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∧

𝜃# 𝜃2
𝜃ℓ

…

𝐶" 𝐶$

∧

𝜃# 𝜃2
𝜃ℓ

…
𝑜# 𝑜2 𝑜# 𝑜2



𝐶' → 𝐶(, Stage III: Switch the Output

𝐶" 𝐶$

∧

𝜃# 𝜃2
𝜃ℓ

…

𝐶" 𝐶$

∧

𝜃# 𝜃2
𝜃ℓ

…
𝑜# 𝑜2 𝑜# 𝑜2



𝐶' → 𝐶(, Stage III: Switch the Output

𝐶" 𝐶$

∧

𝜃# 𝜃2
𝜃ℓ

…

𝐶" 𝐶$

∧

𝜃# 𝜃2
𝜃ℓ

…

𝜹-Equivalence: 𝜃ℓ = “𝑜# ↔ 𝑜2”, 
𝑜# ∧ (𝑜#↔ 𝑜2) = 𝑜2 ∧ (𝑜#↔ 𝑜2)

𝑜# 𝑜2 𝑜# 𝑜2
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𝐶" 𝐶$

∧

𝜃# 𝜃2
𝜃ℓ

…

𝐶" 𝐶$

Delete 𝜃+&𝑠 in the order of:
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𝐶' → 𝐶(, Stage IV: “Shrink” the Proof

𝐶" 𝐶$

∧

𝜃# 𝜃2
𝜃ℓ

…

𝐶" 𝐶$

Delete 𝜃+&𝑠 in the order of:
𝜃ℓ, 𝜃ℓ:#, … , 𝜃#

𝜹-Equivalence: same as the growing phase



𝐶' → 𝐶(, Stage V: “Shrink” 𝐶'



𝐶' → 𝐶(, Stage V: “Shrink” 𝐶'

𝐶" 𝐶$

Output



𝐶' → 𝐶(, Stage V: “Shrink” 𝐶'

𝐶" 𝐶$

Delete gates of 
𝐶!one gate a time

Output



𝐶' → 𝐶(, Stage V: “Shrink” 𝐶'

𝐶" 𝐶$
𝐶$

Delete gates of 
𝐶!one gate a time

Output
Output
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∧

∧ ∧

We need small arity, because

𝛿𝑖𝑂 relies on iO for ckt to obfuscate each gate

∧

∨ ¬

𝛿𝑖𝑂

Security Loss ≥ 2|;<+/=|
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More Details (II): Change of the Topology?

Recall: 𝛿𝑖𝑂 doesn’t hide topology

∧

∨ ¬

𝛿𝑖𝑂

We add/delete gates, but…

We can’t change the topology, otherwise we can’t 
apply the security of 𝛿𝑖𝑂.
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Build “Helper” Sub-Circuits

𝑐𝑜𝑝𝑦

𝑐𝑜𝑝𝑦

𝑐𝑜𝑝𝑦 𝑐𝑜𝑝𝑦

Input: 𝑥

𝑥 𝑥

“Copy” circuit

Output: 𝑥+

“Project” circuit
𝑥# 𝑥2 𝑥8 𝑥>
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Proj

Topology changing operations (Adding/Deleting Gate) becomes
changing the functionality of Copy, Proj sub-circuits.



Pad the Circuit

Padding

Proj

Copy

Proj

Topology changing operations (Adding/Deleting Gate) becomes
changing the functionality of Copy, Proj sub-circuits.

The change is “local” due to the tree structure



Technical Details
• 𝛿-Equivalence from ℰℱ-proofs
•𝜹𝒊𝑶 Construction
• iO for Turing Machines



Construct 𝛿𝑖𝑂: Initial Idea



Construct 𝛿𝑖𝑂: Initial Idea

𝑔

𝑤? 𝑤<

𝑤@



Construct 𝛿𝑖𝑂: Initial Idea

𝑔

Use iO for Ckts to 
“obfuscate each gate”

𝑤? 𝑤<

𝑤@



Construct 𝛿𝑖𝑂: Initial Idea

𝑔

Use iO for Ckts to 
“obfuscate each gate”

𝑖𝑂(𝐺𝑎𝑡𝑒A)
(𝑖𝑂: iO for ckts)

𝑤? 𝑤<

𝑤@



Construct 𝛿𝑖𝑂: Initial Idea

𝑔

Use iO for Ckts to 
“obfuscate each gate”

𝑖𝑂(𝐺𝑎𝑡𝑒A)
(𝑖𝑂: iO for ckts)

𝐺𝑎𝑡𝑒! 𝑤", 𝑤# : Output 𝑤$ = 𝑔(𝑤", 𝑤#)

𝑤? 𝑤<

𝑤@



Construct 𝛿𝑖𝑂: Initial Idea

𝑔

Use iO for Ckts to 
“obfuscate each gate”

𝑖𝑂(𝐺𝑎𝑡𝑒A)
(𝑖𝑂: iO for ckts)

𝐺𝑎𝑡𝑒! 𝑤", 𝑤# : Output 𝑤$ = 𝑔(𝑤", 𝑤#)

𝑤? 𝑤<

𝑤@

The adversary can learn the gate from its truth table.
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Encrypt Wire Values

𝑔

𝑤? 𝑤<

𝑤@

𝐾" 𝐾#

𝐾$ 𝐺𝑎𝑡𝑒!:
• Input: Ciphertexts of 𝑤", 𝑤#

Decrypt the input wires 𝑤", 𝑤#
Compute gate g: 𝑤$ = 𝑔(𝑤", 𝑤#)
Encrypt the output wire 𝑤$

• Output: Ciphertext of 𝑤$, 
: Secret key encryption
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Mix-and-Match Attack

Input: 𝑥

…

Input: 𝑥′

…

Mix and Match
𝑤? 𝑤<

𝑤?′ 𝑤<′

𝑤? 𝑤<′

The obfuscated gate reveals 
more info than it should do.

We need authentication!
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𝑔

𝑙 𝑟

𝑜
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𝛿𝑖𝑂 Construction: Super High Level

𝑔

𝑙 𝑟

𝑜
𝐺𝑎𝑡𝑒!

Input: Ciphertext of input wire values, 
Authentication info of 𝑙, 𝑟.

Verification of Authentication
Decrypt input wires
Compute gate 𝑔
Encrypt output wire

Output: Ciphertext of output wire
Authentication info of 𝑜.

𝑖𝑂(𝐺𝑎𝑡𝑒A)

𝛿𝑖𝑂
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Recall: Cook’s Translation

Proofs in PV
Poly-size Proofs 

in ℰℱ

Cook’s Translation

⊢34 𝑀# 𝑥 = 𝑀2(𝑥)⊢ℰℱ 𝐶D#,, 𝑥 ↔ 𝐶D$,,(𝑥)

𝐶D%,,(𝑥): Circuit that computes 𝑀+ for input 𝑥 ≤ 𝑛.

Fix Input length 𝑛

We know how to build iO for circuits 
of poly-size ℰℱ-proof of equivalence ∶ 𝛿𝑖𝑂
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iO for TMs from 𝛿𝑖𝑂

𝑀
Turing Machine

𝐶#

All Input length 
𝑛 ≤ 𝑁%

𝐶2

…

𝐶F&

(𝑁% = 𝜆&'( ))

𝛿𝑖𝑂

𝛿𝑖𝑂(𝐶#)

𝛿𝑖𝑂(𝐶2)

…

𝛿𝑖𝑂(𝐶F&)

Obfuscated ProgramObfuscation time is super-poly!
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Efficient Construction
𝐶#, 𝐶2, … , 𝐶F& have a succinct description

i.e. ∃ circuit [𝑀](⋅,⋅), s.t. [𝑀](𝑛, 𝑖) outputs 
the description of 𝑖-th gate in 𝐶,

𝑖𝑂(𝐺𝑎𝑡𝑒A#)𝛿𝑖𝑂
Recall: 𝜹𝒊𝑶 Construction

How do we generate 𝛿𝑖𝑂 𝐶 𝑖 , given 𝑀 ⋅,⋅ ?
, given [𝑀](⋅,⋅)?

Gates
𝑔#, 𝑔2, … , 𝑔|G|

𝑖𝑂(𝐺𝑎𝑡𝑒A$)

𝑖𝑂(𝐺𝑎𝑡𝑒A|(|)
…

Generate 𝐺𝑎𝑡𝑒!
from [𝑀](⋅,⋅)
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Efficient Construction

𝑀
Turing Machine

𝑈𝐺𝑎𝑡𝑒(⋅,⋅,⋅) 𝑖𝑂(𝑈𝐺𝑎𝑡𝑒)

(iO for small circuit)



Efficient Construction

𝑀
Turing Machine

𝑈𝐺𝑎𝑡𝑒(⋅,⋅,⋅) 𝑖𝑂(𝑈𝐺𝑎𝑡𝑒)

“Uniform” Gate 𝑈𝐺𝑎𝑡𝑒(𝑛, 𝑖, 𝑖𝑛𝑝𝑢𝑡′)
Get description of 𝑖-th gate:

𝑔 ← 𝑀 𝑛, 𝑖
Compute and output

𝐺𝑎𝑡𝑒!(𝑖𝑛𝑝𝑢𝑡′)

(iO for small circuit)
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Future Directions

• iO for Turing machines with proof of equivalence in 𝑍𝐹𝐶?
iO for Turing machines for other logic systems, e.g., Buss’s theory?

Can we use other proof notions e.g. interactive proof systems?
Unprovability of cryptographic problems?


