Indistinguishability Obfuscation via Mathematical Proofs of Equivalence

Abhishek Jain

Johns Hopkins University

Zhengzhong Jin

MIT

Indistinguishability Obfuscation (iO)

```
function main() {
  console.log('hello, world');
}
main()
```

(Circuit/Turing Machine)

```
function _0x19e6(_0x4d301f,_0xcaab53){var _0x3a4e72=_0x3a4e();return
_0x19e6=function(_0x19e691,_0x5809f0){_0x19e691=_0x19e691-0x14e;var
0x16ee0b= 0x3a4e72[ 0x19e691];return
_0x16ee0b;},_0x19e6(_0x4d301f,_0xcaab53);}function _0x3a4e(){var _0x3f0a9d= ['log','199381NCGrSa','2328491tAiNSg','18mVqyqS','4cVQTsk','6PuGzwR','107410
32WsiTVO','104321yYIIVM','370911DTLqdw','10uRQffV','2024504eEkwnt','114dOcOh
j','hello,\x20world','2634710Iatl0d'];_0x3a4e=function(){return
_0x3f0a9d;};return _0x3a4e();}(function(_0x3d9e47,_0x360e03){var
_0x3afd0b=_0x19e6,_0x2928d3=_0x3d9e47();while(!![]){try{var _0x33cc3a=-
parseInt(_0x3afd0b(_0x15a))/_0x1*(-parseInt(_0x3afd0b(_0x158))/_0x2)+-
parseInt(_0x3afd0b(0x15b))/0x3*(-parseInt(_0x3afd0b(0x157))/0x4)+-
parseInt(_0x3afd0b(0x152))/0x5+parseInt(_0x3afd0b(0x150))/0x6*
(parseInt(_0x3afd0b(0x154))/0x7)+-parseInt(_0x3afd0b(0x14f))/0x8*(-
parseInt(_0x3afd0b(0x156))/0x9)+parseInt(_0x3afd0b(0x14e))/0xa*
(parseInt(0x3afd0b(0x155))/0xb)+-
parseInt(_0x3afd0b(0x159))/0xc;if(_0x33cc3a===_0x360e03)break;else
_0x2928d3['push'](_0x2928d3['shift']());}catch(_0x437e27){_0x2928d3['push']
( 0x2928d3['shift']());}}}(_0x3a4e,0x42c94));function main(){var
0x29ace6= 0x19e6:console[ 0x29ace6(0x153)](_0x29ace6(0x151));}main();
```

C'

Indistinguishability Obfuscation (iO)

```
function main() {
  console.log('hello, world');
}
main()
```

C

(Circuit/Turing Machine)

```
function _0x19e6(_0x4d301f,_0xcaab53){var _0x3a4e72=_0x3a4e();return
_0x19e6=function(_0x19e691,_0x5809f0){_0x19e691=_0x19e691-0x14e;var
0x16ee0b= 0x3a4e72[ 0x19e691];return
j','hello,\x20world','2634710Iatl0d'];_0x3a4e=function(){return
_0x3f0a9d;};return _0x3a4e();}(function(_0x3d9e47,_0x360e03){var
_0x3afd0b=_0x19e6,_0x2928d3=_0x3d9e47();while(!![]){try{var _0x33cc3a=-
parseInt(_0x3afd0b(_0x15a))/_0x1*(-parseInt(_0x3afd0b(_0x158))/_0x2)+-
parseInt(_0x3afd0b(0x15b))/0x3*(-parseInt(_0x3afd0b(0x157))/0x4)+-
parseInt(_0x3afd0b(0x152))/0x5+parseInt(_0x3afd0b(0x150))/0x6*
(parseInt(_0x3afd0b(0x154))/0x7)+-parseInt(_0x3afd0b(0x14f))/0x8*(-
parseInt(_0x3afd0b(0x156))/0x9)+parseInt(_0x3afd0b(0x14e))/0xa*
(parseInt(\_0x3afd0b(0x155))/0xb)+-
parseInt(_0x3afd0b(0x159))/0xc;if(_0x33cc3a===_0x360e03)break;else
_0x2928d3['push'](_0x2928d3['shift']());}catch(_0x437e27){_0x2928d3['push']
( 0x2928d3['shift']());}}}(_0x3a4e,0x42c94));function main(){var
 0x29ace6= 0x19e6;console[_0x29ace6(0x153)](_0x29ace6(0x151));}main();
```

C'

Preserve Functionality:

$$\forall x, C'(x) = C(x)$$

For any
$$C_0$$
, C_1 if $\forall x C_0(x) = C_1(x)$
$$iO(1^{\lambda}, C_0) \approx_c iO(1^{\lambda}, C_1) \qquad (\lambda : \text{Security Parameter})$$

For any
$$C_0$$
, C_1 if $\forall x C_0(x) = C_1(x)$
$$iO(1^{\lambda}, C_0) \approx_c iO(1^{\lambda}, C_1) \qquad (\lambda : \text{Security Parameter})$$

For any
$$C_0$$
, C_1 if $\forall x C_0(x) = C_1(x)$

$$iO(1^{\lambda}, C_0) \approx_c iO(1^{\lambda}, C_1)$$
 (λ : Security Parameter)

For any
$$C_0$$
, C_1 if $\forall x C_0(x) = C_1(x)$
$$iO(1^{\lambda}, C_0) \approx_c iO(1^{\lambda}, C_1) \qquad (\lambda : \text{Security Parameter})$$

Can we build iO?

Can we build iO?

• A long line of works:

```
[Garg-Gentry-Halevi-Raykova-Sahai-Waters'13][Pass-Seth-Telang'14]
[Gentry-Lewko-Sahai-Waters'15][Ananth-Jain'15][Bitansky-Vaikuntanathan'15]
[Lin'16][Lin-Vaikuntanathan'16][Lin-Pass-Karn Seth-Telang'16]
[Garg-Miles-Mukherjee-Sahai-Srinivasan-Zhandry'16][Ananth-Sahai'17][Lin'17]
[Lin-Tessaro'17][Agrawal'19][Jain-Lin-Matt-Sahai'19][Brakerski-Dottling-Malavolta'20]...
```

Can we build iO?

• A long line of works:

```
[Garg-Gentry-Halevi-Raykova-Sahai-Waters'13][Pass-Seth-Telang'14]
[Gentry-Lewko-Sahai-Waters'15][Ananth-Jain'15][Bitansky-Vaikuntanathan'15]
[Lin'16][Lin-Vaikuntanathan'16][Lin-Pass-Karn Seth-Telang'16]
[Garg-Miles-Mukherjee-Sahai-Srinivasan-Zhandry'16][Ananth-Sahai'17][Lin'17]
[Lin-Tessaro'17][Agrawal'19][Jain-Lin-Matt-Sahai'19][Brakerski-Dottling-Malavolta'20]...
```

• iO from Well-Founded Assumptions [Jain-Lin-Sahai'20]

Based on **Sub-exponential Security** of Learning with Errors, and Learning Parity with Noise and more...

2|*input*|-Loss in Reduction

$2^{|input|}$ -Loss in Reduction

2|*input*|-Loss in Reduction

Assume 2^{λ^c} -Security of P & set $2^{\lambda^c} > 2^{|input|}$

$2^{|input|}$ -Loss in Reduction

Assume 2^{λ^c} -Security of P & set $2^{\lambda^c} > 2^{|input|}$

 $|input| < \lambda^c$

$2^{|\mathit{input}|}$ -Security Loss is Bad

2 | input | - Security Loss is Bad

2 | input | - Security Loss is Bad

Ideally: M' works for unbounded input-length

2 | input | - Security Loss is Bad

Ideally: M' works for unbounded input-length

Prior work:

Input length of M' is **bounded (since** $|input| < \lambda^c$)

[Bitansky-Garg-Lin-Pass-Telang'15][Canetti-Holmgren-Jain-Vaikuntanathan'15][Koppula-Lewko-Waters'15]...

iO: the "Central Hub" [Sahai-Waters'13]

2|input|-Security Loss "Spreads"

Nash Equilibrium Witness Encryption NIZKs/SNARGs iO. . . Deniable Software watermarking Encryption

2|input|-Security Loss "Spreads"

Nash Equilibrium Witness Encryption NIZKs/SNARGs **Large CRS** iO... Deniable Software watermarking Encryption

2|input|-Security Loss "Spreads"

Nash Equilibrium Witness Encryption NIZKs/SNARGs **Large ciphertext Large CRS** iO... Deniable Software watermarking Encryption

Question: Can we build iO with a security loss independent of the input length?

$$C_0^*(x^*) \neq C_1(x^*)$$

Reduction needs to check $C_0^* \equiv C_1^*$

Reduction needs to check $C_0^* \equiv C_1^*$

Non-Falsifiable definition appears in many other places in crypto

Non-Falsifiable definition appears in many other places in crypto

Example: Soundness of Proof Systems

(for $L \in NP$)

Non-Falsifiable definition appears in many other places in crypto

Example: Soundness of Proof Systems

(for $L \in NP$)

If $x \notin L$, any cheating proof should be rejected

Broader Perspective

Non-Falsifiable definition appears in many other places in crypto

Example: Soundness of Proof Systems

(for $L \in NP$)

If $x \notin L$, any cheating proof should be rejected

Non-Falsifiable

Broader Perspective

Non-Falsifiable definition appears in many other places in crypto

Example: Soundness of Proof Systems

(for $L \in NP$)

If $x \notin L$, any cheating proof should be rejected

Non-Falsifiable

[Gentry-Wichs'10] impossibility for SNARGs

Reduction checks $C_0(x^*) = C_1(x^*)$ for every x^* with $2^{|x^*|}$ -loss

Previous Works:

Reduction checks $C_0(x^*) = C_1(x^*)$ for every x^* with $2^{|x^*|}$ -loss

Previous Works:

" $\forall x \ C_0(x) = C_1(x)$ " can be decided in **P** [Garg-Pandey-Srinivasan'16, Garg-Srinivasan'16, Garg-Pandey-Srinivasan-Zhandry'17] [Liu-Zhandry'17]

Reduction checks $C_0(x^*) = C_1(x^*)$ for every x^* with $2^{|x^*|}$ -loss

Previous Works:

" $\forall x \ C_0(x) = C_1(x)$ " can be decided in **P** [Garg-Pandey-Srinivasan'16, Garg-Srinivasan'16, Garg-Pandey-Srinivasan-Zhandry'17] [Liu-Zhandry'17]

This Work:

Leverage **math. proofs** of " $\forall x \ C_0(x) = C_1(x)$ " to avoid the $2^{|x|}$ -loss

Why Math. Proofs Exist?

Recall: when iO is used in the security proof

• • •

- Construct C_0 , C_1
- Write a math. proof for $\forall x C_0(x) = C_1(x)$
- Apply iO security to derive $iO(C_0) \approx_c iO(C_1)$

• • •

The proof must be "short" (length $\ll 2^{|x|}$)
Otherwise, we (human brain) can't understand it.

Our Results I (for Propositional Logic)

iO with security loss independent of |input| for any ckts $\{C_n^1\}_n$, $\{C_n^2\}_n$ where $C_n^1(x) \leftrightarrow C_n^2(x)$ have **poly-size proofs** in *Extended Frege systems*.

Our Results I (for Propositional Logic)

iO with security loss independent of |input| for any ckts $\{C_n^1\}_n$, $\{C_n^2\}_n$ where $C_n^1(x) \leftrightarrow C_n^2(x)$ have **poly-size proofs** in *Extended Frege systems*.

(Assumptions: $2^{p(\lambda)}$ -secure LWE, OWF, iO for circuits of size independent of |input|.)

Extended Frege System (\mathcal{EF})

Variables represent True/False

• Axioms:

$$(p \to (q \to r) \to ((p \to q) \to (p \to r))$$

$$p \to (q \to p)$$

$$p \to \neg \neg p$$

• Inference Rule:

$$p, p \rightarrow q \vdash q$$

Extension Rule:

What theorems have poly-size \mathcal{EF} -proofs?

 $e \leftrightarrow \phi$ (assign a new variable e to a formula ϕ)

Poly-size Proofs in \mathcal{EF}

Propositional Translation

Theory PV

Poly-size Proofs in & Theory PV

Variables represent *natural numbers*

Poly-size Proofs in $\mathcal{E}\mathcal{F}$

Theory PV

Variables represent *natural numbers*

Allow definition of any polynomial-time functions, e.g.

- Arithmetic: $+, -, \times, \div, \leq, <, [\cdot], mod, ...$
- Logic Symbols: \rightarrow , \neg , \wedge , ...

Our Results II (for Cook's Theory PV)

iO for any *unbounded-input* Turing machines M_1, M_2 , with $\vdash_{PV} M_1(x) = M_2(x)$.

Assumptions: sub-exponential security of LWE & iO for circuits.

Prior work:

Prior work:

 Correctness of "natural" algorithms in P

Prior work:

- Correctness of "natural" algorithms in P
- Basic Linear Algebra

Prior work:

- Correctness of "natural" algorithms in P
- Basic Linear Algebra
- Combinatorial Theorems

Prior work:

- Correctness of "natural" algorithms in P
- Basic Linear Algebra
- Combinatorial Theorems

• • •

Prior work:

- Correctness of "natural" algorithms in P
- Basic Linear Algebra
- Combinatorial Theorems

• • •

This work:

Many crypto algorithms are "natural":

ElGamal Encryption

Regev's Encryption

Puncturable PRFs

• • •

Prior work:

- Correctness of "natural" algorithms in P
- Basic Linear Algebra
- Combinatorial Theorems

• • •

This work:

Many crypto algorithms are "natural":

ElGamal Encryption

Regev's Encryption

Puncturable PRFs

• •

Unprovable Thoerems (assuming Factoring):

- Fermat's Little Theorem
- Correctness for "Primes is in P"

Our Results III: Applications

SNARGs with CRS size $poly(\lambda, T_{\bar{R}})$ for $L \in NP \cap coNP$, if

Our Results III: Applications

SNARGs with CRS size $poly(\lambda, T_{\bar{R}})$ for $L \in NP \cap coNP$, if

" $L \cap \overline{L} = \phi$ " is provable in PV,

$$(\vdash_{PV} \overline{R}(x,\overline{w}) = 1 \rightarrow R(x,w) = 0)$$

R (resp. $ar{R}$) is NP-relation machine of L (resp. $ar{L}$)

Our Results III: Applications

SNARGs with CRS size $poly(\lambda, T_{\bar{R}})$ for $L \in NP \cap coNP$, if

" $L \cap \overline{L} = \phi$ " is provable in PV,

$$(\vdash_{PV} \overline{R}(x,\overline{w}) = 1 \rightarrow R(x,w) = 0)$$

R (resp. \overline{R}) is NP-relation machine of L (resp. \overline{L})

(Also apply to witness encryptions with ciphertext size poly(λ , $T_{\bar{R}}$))

How do we leverage math. proofs?

How do we leverage math. proofs?

(An Overview)

δ -Equivalence for Circuits

δ -Equivalence for Circuits

δ -Equivalence for Circuits

C and C' are almost the same, except for a functionality equivalent <u>sub-circuit</u> of size $O(\log n)$

$\mathcal{EF} ext{-Proofs imply δ-Equivalence}$

Assume iO for δ -Equivalent Ckts: δiO

Assume iO for δ -Equivalent Ckts: δiO

$$\delta iO(C^{(1)})$$

$$\delta iO(C^{(2)})$$

$$\delta iO(C^{(3)})$$

$$\delta iO(C^{(1)})$$
 $\delta iO(C^{(2)})$ $\delta iO(C^{(3)})$... $\delta iO(C^{(\ell')})$

Assume iO for δ -Equivalent Ckts: δiO

$$\delta iO(C^{(1)}) \approx \delta iO(C^{(2)}) \approx \delta iO(C^{(3)}) \dots \delta iO(C^{(\ell')})$$

Focus: iO for δ -Equivalent Ckts

Assume iO for δ -Equivalent Ckts: δiO

$$\delta iO(C^{(1)}) \approx \delta iO(C^{(2)}) \approx \delta iO(C^{(3)}) \dots \delta iO(C^{(\ell')})$$

$$\Rightarrow \delta iO(C_0) \approx_c \delta iO(C_1)$$

Focus: iO for δ -Equivalent Ckts

Assume iO for δ -Equivalent Ckts: δiO

$$\delta iO(C^{(1)}) \approx \delta iO(C^{(2)}) \approx \delta iO(C^{(3)}) \dots \delta iO(C^{(\ell')})$$

$$\Rightarrow \delta iO(C_0) \approx_c \delta iO(C_1)$$

Total Security Loss =
$$\ell'$$
 ·Loss of δiO $(\ell' = poly)$

Focus: iO for δ -Equivalent Ckts

Assume iO for δ -Equivalent Ckts: δiO

$$\delta iO(C^{(1)}) \approx \delta iO(C^{(2)}) \approx \delta iO(C^{(3)}) \dots \delta iO(C^{(\ell')})$$

$$\Rightarrow \delta iO(C_0) \approx_c \delta iO(C_1)$$

Total Security Loss =
$$\ell'$$
 ·Loss of δiO $(\ell' = poly)$

If loss of δiO is independent of |input|, so is the total loss.

Topology is preserved

Topology is preserved

C, C': δ -Equivalent

C, C': δ -Equivalent

Check *all* inputs to **Sub-ckt**Security Loss: $2^{|subckt \ input|}$ $= 2^{O(\log n)} = poly!$

 $C, C': \delta$ -Equivalent

Check *all* inputs to **Sub-ckt Security Loss**: $2^{|subckt \ input|}$ $= 2^{O(\log n)} = poly!$

C, C': δ -Equivalent

Check *all* inputs to **Sub-ckt Security Loss**: $2^{|subckt \ input|}$ $= 2^{O(\log n)} = poly!$

Technical Details

- \mathcal{EF} -Proofs $\Rightarrow \delta$ -Equivalence
- Construct δiO
- iO for Turing machines

Technical Details

- \mathcal{EF} -Proofs \Rightarrow δ -Equivalence
- Construct δiO
- iO for Turing machines

Goal: \mathcal{EF} -Proofs $\Rightarrow \delta$ -Equivalence

Goal: \mathcal{EF} -Proofs $\Rightarrow \delta$ -Equivalence

Alternative View: A sequence of *local* changes

Proofs in logic systems are "local"

Proofs in logic systems are "local"

(Similar to δ -equivalence)

Proofs in logic systems are "local"

(Similar to δ -equivalence)

Each line in \mathcal{EF} -proofs is also a circuit

(Can be used to modify circuits)

δ -Equivalence

When a gate is added, its output is not used anywhere

δ -Equivalence

When a gate is added, its output is not used anywhere

$$\mathcal{EF}$$
-Proof of $C_0(x) \leftrightarrow C_1(x)$: $\theta_1, \theta_2, \dots, \theta_\ell$

$$\mathcal{EF}$$
-Proof of $C_0(x) \leftrightarrow C_1(x)$: $\theta_1, \theta_2, \dots, \theta_\ell$

$$\mathcal{EF}$$
-Proof of $C_0(x) \leftrightarrow C_1(x)$: $\theta_1, \theta_2, \dots, \theta_\ell$

$$\mathcal{EF}$$
-Proof of $C_0(x) \leftrightarrow C_1(x)$: $\theta_1, \theta_2, \dots, \theta_\ell$

$$\mathcal{EF}$$
-Proof of $C_0(x) \leftrightarrow C_1(x)$: $\theta_1, \theta_2, \dots, \theta_\ell$

Intuition: θ_i 's (i.e. lines of the proof) are "true", so the functionality is preserved.

<u>i-th Step: Add θ_i </u>

Before: $C_0(x) \wedge \theta_1 \wedge \cdots \wedge \theta_{i-1}$

After: $C_0(x) \wedge \theta_1 \wedge \cdots \wedge \theta_{i-1} \wedge \theta_i$

i-th Step: Add θ_i

Before: $C_0(x) \wedge \theta_1 \wedge \cdots \wedge \theta_{i-1}$

After: $C_0(x) \wedge \theta_1 \wedge \cdots \wedge \theta_{i-1} \wedge \theta_i$

i-th Step: Add
$$\theta_i$$

Before:
$$C_0(x) \wedge \theta_1 \wedge \cdots \wedge \theta_{i-1}$$

After:
$$C_0(x) \wedge \theta_1 \wedge \cdots \wedge \theta_{i-1} \wedge \theta_i$$

How θ_i is derived:

Axiom

i-th Step: Add
$$\theta_i$$

Before:
$$C_0(x) \wedge \theta_1 \wedge \cdots \wedge \theta_{i-1} \wedge 1$$

After:
$$C_0(x) \wedge \theta_1 \wedge \cdots \wedge \theta_{i-1} \wedge \theta_i$$

How θ_i is derived:

Axiom

i-th Step: Add
$$\theta_i$$

Before:
$$C_0(x) \wedge \theta_1 \wedge \cdots \wedge \theta_{i-1} \wedge 1$$

After:
$$C_0(x) \wedge \theta_1 \wedge \cdots \wedge \theta_{i-1} \wedge \theta_i$$

How θ_i is derived:

• Axiom $1 \equiv \theta_i$ (Axioms are tautologies)

i-th Step: Add
$$\theta_i$$

Before:
$$C_0(x) \wedge \theta_1 \wedge \cdots \wedge \theta_{i-1} \wedge 1$$

After:
$$C_0(x) \wedge \theta_1 \wedge \cdots \wedge \theta_{i-1} \wedge \theta_i$$

How θ_i is derived:

Axiom

i-th Step: Add
$$\theta_i$$

Before:
$$C_0(x) \wedge \theta_1 \wedge \cdots \wedge \theta_{i-1} \wedge 1$$

After: $C_0(x) \wedge \theta_1 \wedge \cdots \wedge \theta_{i-1} \wedge \theta_i$

- Axiom
- Inference Rule: Modus Ponens $(p, p \rightarrow q \vdash q)$

<u>i-th Step: Add θ_i </u>

Before:

After:

- Axiom
- Inference Rule: Modus Ponens $(p, p \rightarrow q \vdash q)$

i-th Step: Add
$$\theta_i$$

Before:
$$C_0(x) \wedge p \wedge \cdots \wedge (p \rightarrow q) \wedge \cdots$$

After:
$$C_0(x) \wedge p \wedge \cdots \wedge (p \rightarrow q) \wedge \cdots \wedge q$$

- Axiom
- Inference Rule: Modus Ponens $(p, p \rightarrow q \vdash q)$

i-th Step: Add
$$\theta_i$$

Before:
$$C_0(x) \wedge p \wedge \cdots \wedge (p \rightarrow q) \wedge \cdots$$

After:
$$C_0(x) \wedge p \wedge \cdots \wedge (p \rightarrow q) \wedge \cdots \wedge q$$

- Axiom
- Inference Rule: Modus Ponens $(p, p \rightarrow q \vdash q)$

$$p \land (p \rightarrow q) \equiv p \land (p \rightarrow q) \land q$$

Stage III: Switch oo to o1

Stage III: Switch oo to o1

Stage III: Switch o₀ to o₁

<u>δ-Equivalence</u>

 θ_ℓ is " $o_0 \leftrightarrow o_1$ " (A proof of $C_0(x) \leftrightarrow C_1(x)$ must end with $o_0 \leftrightarrow o_1$)

Stage III: Switch oo to o1

δ -Equivalence

 θ_ℓ is " $o_0 \leftrightarrow o_1$ " (A proof of $C_0(x) \leftrightarrow C_1(x)$ must end with $o_0 \leftrightarrow o_1$)

$$o_0 \land (o_0 \leftrightarrow o_1) \equiv o_1 \land (o_0 \leftrightarrow o_1)$$

 δ -Equivalence: Similar to "Growing the proof" Stage

δ-Equivalence:

Before we delete a gate, the output of that gate is never used.

More Details: Multi-Arity Gates?

We Use: Multi-arity Λ-Gate

$$C_0(x) \wedge \theta_1 \wedge \theta_2 \dots \wedge \theta_\ell$$

More Details: Multi-Arity Gates?

We Use: Multi-arity ∧-Gate

$$C_0(x) \wedge \theta_1 \wedge \theta_2 \dots \wedge \theta_\ell$$

More Details: Multi-Arity Gates?

Technical Details

- \mathcal{EF} -Proofs $\Rightarrow \delta$ -Equivalence
- Construct δiO
- iO for Turing machines

Mix-and-Match Attack

Mix-and-Match Attack Input: x

...

Mix-and-Match Attack Input: x Input: x'

Mix-and-Match Attack Input: x Mix-n-Match Input: x'

Mix-and-Match Attack Input: x Mix-n-Match Input: x'

Mix-and-Match Attack Input: x Mix-n-Match Input: x'The obfuscated gate reveals more info than it should do.

 \forall wire w, sign ct_w with x:

$$\sigma_w \coloneqq MAC_{K_w}(ct_w||x)$$

 \forall wire w, sign ct_w with x:

$$\sigma_w \coloneqq MAC_{K_w}(ct_w||x)$$

$Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, x)$

Verify MAC σ_l , σ_r w.r.t. l, r

...(Decrypt, compute g, and re-encrypt)...

Also sign and output σ_o w.r.t. o

 \forall wire w, sign ct_w with x:

$$\sigma_w \coloneqq MAC_{K_w}(ct_w||x)$$

$$Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, x)$$

Verify MAC σ_l , σ_r w.r.t. l, r

...(Decrypt, compute g, and re-encrypt)...

Also sign and output σ_o w.r.t. o

x is too long!

 \forall wire w, sign ct_w with x:

$$\sigma_w \coloneqq MAC_{K_w}(ct_w||x)$$

 $Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, x)$

Verify MAC σ_l , σ_r w.r.t. l, r

...(Decrypt, compute g, and re-encrypt)...

Also sign and output σ_o w.r.t. o

x is too long!

Gate g may not depend on the entire x (e.g. NC^0 circuits)

 $Dep(l) := \{w | l \text{ depends on wire } w\}$

Use CT_l , CT_r in $Gate_g$

$Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, CT_l, CT_r)$

Check $\sigma_l = MAC_{k_l}(ct_l||CT_l)$

Check $\sigma_r = MAC_{k_r}(ct_r||CT_r)$

Use CT_l , CT_r in $Gate_g$

$$Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, CT_l, CT_r)$$

Check $\sigma_l = MAC_{k_l}(ct_l||CT_l)$

Check $\sigma_r = MAC_{k_r}(ct_r||CT_r)$

Check **consistency** of CT_l and CT_r

Use CT_l , CT_r in $Gate_g$

$$Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, CT_l, CT_r)$$

Check
$$\sigma_l = MAC_{k_l}(ct_l||CT_l)$$

Check
$$\sigma_r = MAC_{k_r}(ct_r||CT_r)$$

Check **consistency** of CT_l and CT_r

...(Decrypt, compute g, and re-encrypt)...

CT_1 and CT_r are Consistent:

 CT_l , CT_r contains same ciphertexts in $Dep(l) \cap Dep(r)$

Proof of Security (High Level) c_0 c_1 For any δ -Equivalent Ckts:

For any δ -Equivalent Ckts:

 $\delta iO(C_0)$

For any δ -Equivalent Ckts:

For any δ -Equivalent Ckts:

For any δ -Equivalent Ckts:

Direct-Gate_g(ct_l , ct_r , σ_l , σ_r , CT_l , CT_r)

...(check MACs & consistency)...

Sub-ckt.input \leftarrow Decryt (CT_l , CT_r)

...(encrypt output wire)...

For any δ -Equivalent Ckts:

Direct-Gate_q(ct_l , ct_r , σ_l , σ_r , CT_l , CT_r)

...(check MACs & consistency)...

Sub-ckt.input \leftarrow Decryt (CT_1, CT_r)

Directly Compute Sub-ckt(sub-ckt.input)

...(encrypt output wire)...

For any δ -Equivalent Ckts:

Direct-Gate_g(ct_l , ct_r , σ_l , σ_r , CT_l , CT_r)

...(check MACs & consistency)...

Sub-ckt.input \leftarrow Decryt (CT_l , CT_r)

Directly Compute Sub-ckt(sub-ckt.input)

...(encrypt output wire)...

Extend this idea to general circuits? Challenge: $|CT_I|$ is too large.

Extend this idea to general circuits? Challenge: $|CT_l|$ is too large.

Observation:
g only depends on
sub-ckt input

[Hubacek-Wichs'15, Okamoto-Pietrzak-Waters-Wichs'15]

[Hubacek-Wichs'15, Okamoto-Pietrzak-Waters-Wichs'15]

Normal Mode *K*

[Hubacek-Wichs'15, Okamoto-Pietrzak-Waters-Wichs'15]

Normal Mode		Trapdoor Mode
K	\thickapprox_{c}	$K^*(S \subseteq [n])$

[Hubacek-Wichs'15, Okamoto-Pietrzak-Waters-Wichs'15]

Normal Mode $\approx_{\mathcal{C}}$ Trapdoor Mode $K^*(S \subseteq [n])$

$$h \leftarrow SSB(K, m_1, m_2, ..., m_n)$$

[Hubacek-Wichs'15, Okamoto-Pietrzak-Waters-Wichs'15]

[Hubacek-Wichs'15, Okamoto-Pietrzak-Waters-Wichs'15]

In Our Setting: ($S := \{\text{input wires to sub-ckt}\}$)

Outside
$$Gate_g$$
:
$$h_l = SSB(CT_l)$$
$$h_r = SSB(CT_r)$$

$Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, CT_l, CT_r)$

Check
$$\sigma_l = MAC_{k_l}(ct_l || CT_l)$$

Check $\sigma_r = MAC_{k_r}(ct_r || CT_r)$

Outside $Gate_g$: $h_l = SSB(CT_l)$ $h_r = SSB(CT_r)$

$Gate_g(ct_l, ct_r, \sigma_l, \sigma_r,)$

Check $\sigma_l = MAC_{k_l}(ct_l || CT_l)$

Check $\sigma_r = MAC_{k_r}(ct_r || CT_r)$

Outside
$$Gate_g$$
:
$$h_l = SSB(CT_l)$$
$$h_r = SSB(CT_r)$$

$$Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, h_l, h_r)$$

Check $\sigma_l = MAC_{k_l}(ct_l || CT_l)$

Check $\sigma_r = MAC_{k_r}(ct_r || CT_r)$

Outside
$$Gate_g$$
:
$$h_l = SSB(CT_l)$$
$$h_r = SSB(CT_r)$$

$Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, h_l, h_r)$

```
Check \sigma_l = MAC_{k_l}(ct_l||)
```

Check
$$\sigma_r = MAC_{k_r}(ct_r ||)$$

Outside
$$Gate_g$$
:
$$h_l = SSB(CT_l)$$
$$h_r = SSB(CT_r)$$

$$Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, h_l, h_r)$$

Check $\sigma_l = MAC_{k_l}(ct_l || h_l)$

Check $\sigma_r = MAC_{k_r}(ct_r || h_r)$

Outside
$$Gate_g$$
:
$$h_l = SSB(CT_l)$$
$$h_r = SSB(CT_r)$$

$Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, h_l, h_r)$

Check $\sigma_l = MAC_{k_l}(ct_l || h_l)$

Check $\sigma_r = MAC_{k_r}(ct_r || h_r)$

Check consistency of CT_l and CT_r

Outside
$$Gate_g$$
:
$$h_l = SSB(CT_l)$$
$$h_r = SSB(CT_r)$$

$Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, h_l, h_r)$

Check $\sigma_l = MAC_{k_l}(ct_l || h_l)$

Check $\sigma_r = MAC_{k_r}(ct_r || h_r)$

Check consistency of CT_l and CT_r ???

Outside
$$Gate_g$$
:
$$h_l = SSB(CT_l)$$
$$h_r = SSB(CT_r)$$

$$Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, h_l, h_r)$$

Check
$$\sigma_l = MAC_{k_l}(ct_l || h_l)$$

Check
$$\sigma_r = MAC_{k_r}(ct_r || h_r)$$

Check consistency of CT_l and CT_r ???

...(Decrypt, compute g, and re-encrypt)...

SNARGs? No Statistical Soundness

Outside
$$Gate_g$$
:
$$h_l = SSB(CT_l)$$
$$h_r = SSB(CT_r)$$

$$Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, h_l, h_r)$$

Check
$$\sigma_l = MAC_{k_l}(ct_l || h_l)$$

Check
$$\sigma_r = MAC_{k_r}(ct_r || h_r)$$

Check consistency of CT_l and CT_r ???

...(Decrypt, compute g, and re-encrypt)...

SNARGs?
No Statistical Soundness

Consistency for sub-ckt input (binding positions) is enough

Recall: SNARGs for Batch-Index [Choudhuri-Jain-Jin'21]

Index Language: $L = \{i | \exists w : C(i, w) = 1\}$

[Choudhuri-Jain-Jin'21]

Index Language: $L = \{i | \exists w : C(i, w) = 1\}$

CRS

[Choudhuri-Jain-Jin'21]

Index Language:
$$L = \{i | \exists w : C(i, w) = 1\}$$

[Choudhuri-Jain-Jin'21]

Index Language: $L = \{i | \exists w : C(i, w) = 1\}$

Verify in time $poly(\lambda, |C|, \log k)$

[Choudhuri-Jain-Jin'21]

Index Language: $L = \{i | \exists w : C(i, w) = 1\}$

Verify in time $poly(\lambda, |C|, \log k)$

Accept/Reject

[Choudhuri-Jain-Jin'21]

Index Language: $L = \{i | \exists w : C(i, w) = 1\}$

Verify in time $poly(\lambda, |C|, \log k)$

Accept/Reject

Completeness:

If $[k] \subseteq L$, honestly generated proof will be accepted.

Normal Mode \approx_C Trapdoor Mode $CRS^*(S)$

Normal Mode \approx_C Trapdoor Mode $CRS^*(S)$

Statistical Sound for **S**:

If $S \subseteq L$ does not hold, then unbounded adv. can't find cheating proof.

Prove: $\forall w \in [N]$, \exists local openings & ct_w , ct_w' s.t. if $ct_w \neq \bot \land ct_w' \neq \bot$, then $ct_w = ct_w'$ (consistent)

Prove: $\forall w \in [N]$, \exists local openings & ct_w , ct_w' s.t. if $ct_w \neq \bot \land ct_w' \neq \bot$, then $ct_w = ct_w'$ (consistent)

Proof via SNARGs for Batch-Index

Add Proof of Consistency

Outside
$$Gate_g$$
: $h_l = SSB(CT_l)$
 $h_r = SSB(CT_r)$

 $Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, h_l, h_r, \pi)$

...(Verify the MACs)...

Add Proof of Consistency

Outside $Gate_g$:

$$h_l = SSB(CT_l)$$

$$h_r = SSB(CT_r)$$

 π : consistency proof for h_l , h_r

 $Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, h_l, h_r, \pi)$

...(Verify the MACs)...

Add Proof of Consistency

Outside $Gate_g$:

$$h_l = SSB(CT_l)$$

$$h_r = SSB(CT_r)$$

 π : consistency proof for h_l , h_r

 $Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, h_l, h_r, \pi)$

...(Verify the MACs)...

Verify the proof π w.r.t. h_l , h_r

Technical Details

- \mathcal{EF} -Proofs $\Rightarrow \delta$ -Equivalence
- Construct δiO
- iO for Turing machines

Proofs in PV

$$\vdash_{PV} M_1(x) = M_2(x)$$

 $C_{b,n}(x)$: Circuit that computes M_b for input |x|=n.

Poly-size \mathcal{EF} -Proofs

Proofs in PV

$$\vdash_{\mathcal{EF}} C_{1,n}(x) \leftrightarrow C_{2,n}(x)$$

$$\vdash_{PV} M_1(x) = M_2(x)$$

 $C_{b,n}(x)$: Circuit that computes M_b for input |x|=n.

Poly-size \mathcal{EF} -Proofs

Proofs in PV

$$\vdash_{\mathcal{EF}} C_{1,n}(x) \leftrightarrow C_{2,n}(x)$$

$$\vdash_{PV} M_1(x) = M_2(x)$$

 $C_{b,n}(x)$: Circuit that computes M_b for input |x|=n.

Use δiO ?

*M*Turing Machine

$$(N_0 = \lambda^{\log \lambda})$$

*M*Turing Machine

All Input length $n \leq N_0$

iO for TMs from δiO

Obfuscated Program

iO for TMs from δiO

Obfuscation time is super-poly!

Obfuscated Program

 C_1, C_2, \dots, C_{N_0} have a succinct description

```
C_1, C_2, \dots, C_{N_0} have a succinct description i.e. \exists circuit [M](\cdot, \cdot), s.t. [M](n, i) outputs the description of i-th gate in C_n
```

 C_1, C_2, \dots, C_{N_0} have a succinct description i.e. \exists circuit $[M](\cdot, \cdot)$, s.t. [M](n, i) outputs the description of i-th gate in C_n

M
Turing Machine

(iO for small circuit)

(iO for small circuit)

"Uniform" Gate UGate(n, i, input')Get description of i-th gate: $g \leftarrow [M](n, i)$ Emulate $Gate_g(input')$

Inference Rules in **Logic systems** for Proving Equivalence

Inference Rules in **Logic systems** for Proving Equivalence

Inference Rules in **Logic systems** for Proving Equivalence

Techniques to argue Indistinguishability for iO

Inference Rules in Logic systems for Proving Equivalence

Techniques to argue Indistinguishability for iO

 \mathcal{EF}/PV

Inference Rules in Logic systems for Proving Equivalence

Techniques to argue Indistinguishability for iO

 \mathcal{EF}/PV

Inference Rules in Logic systems for Proving Equivalence

Techniques to argue Indistinguishability for iO

 \mathcal{EF}/PV

 δ -equivalence & δiO

Inference Rules in **Logic systems** for Proving Equivalence

Techniques to argue Indistinguishability for iO

 \mathcal{EF}/PV

 δ -equivalence & δiO

ZFC
(Zermelo-Fraenkel set theory
 with axiom of Choice)

