Indistinguishability Obfuscation via Mathematical Proofs of Equivalence

Abhishek Jain
Johns Hopkins University

Zhengzhong Jin
MIT
Indistinguishability Obfuscation (iO)

Circuit/Turing Machine

1 function main() {
2 console.log('hello, world');
3 }
4 main();

C

(Circuit/Turing Machine)

iO

C’
Indistinguishability Obfuscation (iO)

Preserve Functionality: \(\forall x, C'(x) = C(x) \)

```
function main() {
    console.log('hello, world');
    main();
}
```
Indistinguishability Security
Indistinguishability Security

For any C_0, C_1 if $\forall x \ C_0(x) = C_1(x)$

$$iO(1^\lambda, C_0) \approx_c iO(1^\lambda, C_1) \quad (\lambda : \text{Security Parameter})$$
Indistinguishability Security

For any C_0, C_1 if $\forall x \ C_0(x) = C_1(x)$

$$iO(1^\lambda, C_0) \approx_c iO(1^\lambda, C_1) \quad (\lambda : \text{Security Parameter})$$

Non-falsifiability

C_0, C_1 \iff $iO(C_b)$ \iff b'
Indistinguishability Security

For any C_0, C_1 if $\forall x \ C_0(x) = C_1(x)$

\[iO(1^\lambda, C_0) \approx_c iO(1^\lambda, C_1)\]

(λ : Security Parameter)

Non-falsifiability

\[C_0, C_1\]
\[\downarrow\]
\[iO(C_b)\]
\[\leftarrow\]
\[b'\]
\[\downarrow\]
\[b \leftarrow \{0,1\}\]
Indistinguishability Security

For any C_0, C_1 if $\forall x \ C_0(x) = C_1(x)$

$$iO(1^\lambda, C_0) \approx_c iO(1^\lambda, C_1)$$ (λ : Security Parameter)

Non-falsifiability

C_0, C_1

$iO(C_b)$

$b' \leftarrow \{0, 1\}$

Check $\forall x \ C_0(x) = C_1(x) \land b = b'$ inefficiently
Can we build iO?
Can we build iO?

• A long line of works:
 [Garg-Gentry-Halevi-Raykova-Sahai-Waters’13][Pass-Seth-Telang’14]
 [Gentry-Lewko-Sahai-Waters’15][Ananth-Jain’15][Bitansky-Vaikuntanathan’15]
 [Lin’16][Lin-Vaikuntanathan’16][Lin-Pass-Karn Seth-Telang’16]
 [Garg-Miles-Mukherjee-Sahai-Srinivasan-Zhandry’16][Ananth-Sahai’17][Lin’17]
 [Lin-Tessaro’17][Agrawal’19][Jain-Lin-Matt-Sahai’19][Brakerski-Dottling-Malavolta’20]...
Can we build iO?

• A long line of works:
 [Garg-Gentry-Halevi-Raykova-Sahai-Waters’13][Pass-Seth-Telang’14]
 [Gentry-Lewko-Sahai-Waters’15][Ananth-Jain’15][Bitansky-Vaikuntanathan’15]
 [Lin’16][Lin-Vaikuntanathan’16][Lin-Pass-Karn Seth-Telang’16]
 [Garg-Miles-Mukherjee-Sahai-Srinivasan-Zhandry’16][Ananth-Sahai’17][Lin’17]
 [Lin-Tessaro’17][Agrawal’19][Jain-Lin-Matt-Sahai’19][Brakerski-Dottling-Malavolta’20]...

• **iO from Well-Founded Assumptions** [Jain-Lin-Sahai’20]
 Based on **Sub-exponential Security** of Learning with Errors, and Learning Parity with Noise and more...
$2| input |$ - Loss in Reduction

Adv. for iO
$2^{|\text{input}|}$-Loss in Reduction

Adv. for iO

2$^{|\text{input}|}$-time Reduction

Break

Assumption P
$2^{|\text{input}|}$-Loss in Reduction

Assume 2^{λ_c} -Security of P & set $2^{\lambda_c} > 2^{|\text{input}|}$
$2^{|\text{input}|}$-Loss in Reduction

Adv. for iO

2$^{|\text{input}|}$-time Reduction

Break

Assumption P

Assume 2^{λ^c}-Security of P & set $2^{\lambda^c} > 2^{|\text{input}|}$

$|\text{input}| < \lambda^c$
2|input|-Security Loss is Bad
$2|\text{input}|$-Security Loss is Bad

M (Turing Machine) \hspace{2cm} \text{iO for Turing Machines} \hspace{2cm} M'$ (Turing Machine)
2$|\text{input}|$-Security Loss is Bad

Ideally: M' works for unbounded input-length
$2^{|\text{input}|}$-Security Loss is Bad

Ideally: M' works for unbounded input-length

Prior work:
Input length of M' is bounded (since $|\text{input}| < \lambda^c$)

iO: the “Central Hub” [Sahai-Waters’13]

Nash Equilibrium [Bitansky-Paneth-Rosen’14]

NIZKs/SNARGs

Deniable Encryption

Witness Encryption

Software watermarking

...
$2^{|input|}$-Security Loss “Spreads”

- Nash Equilibrium
- Witness Encryption
- NIZKs/SNARGs
- Deniable Encryption
- Software watermarking

...
2|input| - Security Loss “Spreads”

- Nash Equilibrium
- Witness Encryption
- NIZKs/SNARGs
- Large CRS
- Deniable Encryption
- Software watermarking

...
2^{\text{input}}$-Security Loss “Spreads”

- Nash Equilibrium
- Witness Encryption
- Large CRS
- NIZKs/SNARGs
- Deniable Encryption
- Software watermarking
- Large ciphertext
Question: Can we build iO with a security loss independent of the input length?
Is 2^{input}-Loss Inherent? (folklore)
Is $2^{|\text{input}|}$-Loss Inherent? (folklore)

Adv. for iO

Assumption P

$(C_0 \equiv C_1)$
Is $2^{|\text{input}|}$-Loss Inherent? (folklore)

\[(C_0 \equiv C_1) \]

Adv. for iO

Break

Assumption P
Is $2^{|\text{input}|}$-Loss Inherent? (folklore)
Is $2^{|\text{input}|}$-Loss Inherent? (folklore)

Assumption P

$C_0^*(x^*) \neq C_1(x^*)$

"inadmissible"

Adv. for iO
Is $2^{|\text{input}|}$-Loss Inherent? (folklore)

C^*_0, C^*_1

"inadmissible"
Adv. for iO

$C^*_0(x^*) \neq C^*_1(x^*)$

Not Break

Assumption P
Is $2^{|\text{input}|}$-Loss Inherent? (folklore)

"inadmissible"
Adv. for iO

$C_0^*(x^*) \neq C_1(x^*)$

Reduction needs to check $C_0^* \equiv C_1^*$

Assumption P
Is $2^{|\text{input}|}$-Loss Inherent? (folklore)

```
C_0^*(x^*) \neq C_1(x^*)
```

Not Break

```
C_0^* \equiv C_1^*
```

Reduction needs to check $C_0^* \equiv C_1^*$

"inadmissible"
Adv. for iO

Assumption P
Broader Perspective
Broader Perspective

Non-Falsifiable definition appears in many other places in crypto
Broader Perspective

Non-Falsifiable definition appears in many other places in crypto

Example: Soundness of Proof Systems

(for $L \in NP$)
Broader Perspective

Non-Falsifiable definition appears in many other places in crypto

Example: Soundness of Proof Systems

(for $L \in NP$)

If $x \notin L$, any cheating proof should be rejected
Broader Perspective

Non-Falsifiable definition appears in many other places in crypto

Example: Soundness of Proof Systems
(for $L \in NP$)
If $x \notin L$, any cheating proof should be rejected
Non-Falsifiable
Broader Perspective

Non-Falsifiable definition appears in many other places in crypto

Example: Soundness of Proof Systems

(for $L \in NP$)

If $x \notin L$, any cheating proof should be rejected

Non-Falsifiable

[Gentry-Wichs’10] impossibility for SNARGs
Reduction checks $C_0(x^*) = C_1(x^*)$ for every x^* with $2|x^*|\text{-loss}$
Reduction checks $C_0(x^*) = C_1(x^*)$ for every x^* with $2|x^*|$-loss

Previous Works:

“$\forall x \ C_0(x) = C_1(x)$” can be decided in P

[Garg-Pandey-Srinivasan’16, Garg-Srinivasan’16, Garg-Pandey-Srinivasan-Zhandry’17]

[Liu-Zhandry’17]
Reduction checks $C_0(x^*) = C_1(x^*)$ for every x^* with $2|x^*|$-loss

Previous Works:

“$\forall x \ C_0(x) = C_1(x)$” can be decided in \mathbf{P}

[Garg-Pandey-Srinivasan’16, Garg-Srinivasan’16, Garg-Pandey-Srinivasan-Zhandry’17]

[Liu-Zhandry’17]

This Work:

Leverage math. proofs of “$\forall x \ C_0(x) = C_1(x)$” to avoid the $2|x|$-loss
Why Math. Proofs Exist?

Recall: when iO is used in the security proof

...

• Construct C_0, C_1
• **Write a math. proof** for $\forall x \ C_0(x) = C_1(x)$
• Apply iO security to derive $iO(C_0) \approx_c iO(C_1)$

...

The proof must be “short” (length $\ll 2^{|x|}$)
Otherwise, we (human brain) can’t understand it.
Our Results I (for Propositional Logic)

iO with security loss independent of $|input|$ for any ckts $\{C_n^1\}_n, \{C_n^2\}_n$ where $C_n^1(x) \leftrightarrow C_n^2(x)$ have poly-size proofs in Extended Frege systems.
Our Results I (for Propositional Logic)

\(iO\) with security loss independent of \(|input|\) for any ckts \(\{C^1_n\}_n, \{C^2_n\}_n\) where \(C^1_n(x) \leftrightarrow C^2_n(x)\) have poly-size proofs in Extended Frege systems.

(Assumptions: \(2^{p(\lambda)}\)-secure LWE, OWF, iO for circuits of size independent of \(|input|\).)
Extended Frege System (\mathcal{EF})

Variables represent True/False

• Axioms:

 \[
 (p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r)) \\
 p \rightarrow (q \rightarrow p) \\
 p \rightarrow \neg\neg p
 \]

• Inference Rule:

 \[
 p, p \rightarrow q \vdash q
 \]

• Extension Rule:

 \[e \leftrightarrow \phi\]

 (assign a new variable e to a formula ϕ)

What theorems have poly-size \mathcal{EF}-proofs?
Cook’s Theory PV [Cook’75]
Cook’s Theory PV [Cook’75]

Poly-size Proofs in \mathcal{EF}

Propositional Translation

Theory PV
Cook’s Theory PV [Cook’75]

Poly-size Proofs in \mathcal{EF}

Propositional Translation

Theory PV

Variables represent *natural numbers*
Cook’s Theory PV [Cook’75]

Poly-size Proofs in \mathcal{EF}

Propositional Translation

Theory PV

Variables represent *natural numbers*

Allow definition of *any* polynomial-time functions, e.g.
- Arithmetic: $+, -, \times, \div, \leq, <, \lfloor \cdot \rfloor, \text{mod}, ...$
- Logic Symbols: $\rightarrow, \neg, \land, ...$
Our Results II (for Cook’s Theory PV)

iO for any unbounded-input Turing machines M_1, M_2, with $\vdash_{PV} M_1(x) = M_2(x)$.

Assumptions: sub-exponential security of LWE & iO for circuits.
What Theorems Can PV Prove?
What Theorems Can PV Prove?

Prior work:
What Theorems Can PV Prove?

Prior work:
• Correctness of “natural” algorithms in P
What Theorems Can PV Prove?

Prior work:
- Correctness of “natural” algorithms in P
- Basic Linear Algebra
What Theorems Can PV Prove?

Prior work:
• Correctness of “natural” algorithms in P
• Basic Linear Algebra
• Combinatorial Theorems
What Theorems Can PV Prove?

Prior work:
• Correctness of “natural” algorithms in P
• Basic Linear Algebra
• Combinatorial Theorems
 …
What Theorems Can PV Prove?

Prior work:
• Correctness of “natural” algorithms in P
• Basic Linear Algebra
• Combinatorial Theorems
...

This work:
Many crypto algorithms are “natural”:
ElGamal Encryption
Regev’s Encryption
Puncturable PRFs
...

What Theorems Can PV Prove?

Prior work:
- Correctness of “natural” algorithms in P
- Basic Linear Algebra
- Combinatorial Theorems
 ...

This work:
- Many crypto algorithms are “natural”:
 - ElGamal Encryption
 - Regev’s Encryption
 - Puncturable PRFs
 ...

Unprovable Theorems (assuming Factoring):
- Fermat’s Little Theorem
- Correctness for “Primes is in P”
Our Results III: Applications

SNARGs with CRS size $\text{poly}(\lambda, T_R)$ for $L \in NP \cap \text{coNP}$, if
Our Results III: Applications

SNARGs with CRS size $\text{poly}(\lambda, T_{\bar{R}})$ for $L \in NP \cap \text{coNP}$, if

“$L \cap \bar{L} = \phi$” is provable in PV,

$(\vdash_{PV} \bar{R}(x, \bar{w}) = 1 \rightarrow R(x, w) = 0)$

R (resp. \bar{R}) is NP-relation machine of L (resp. \bar{L})
Our Results III: Applications

SNARGs with CRS size $\text{poly}(\lambda, T_{\overline{R}})$ for $L \in NP \cap \text{coNP}$, if

"$L \cap \overline{L} = \phi$" is provable in PV,

$(\vdash_{PV} \overline{R}(x, \overline{w}) = 1 \rightarrow R(x, w) = 0)$

R (resp. \overline{R}) is NP-relation machine of L (resp. \overline{L})

(Also apply to witness encryptions with ciphertext size $\text{poly}(\lambda, T_{\overline{R}})$)
How do we leverage math. proofs?
How do we leverage math. proofs?

(An Overview)
δ-Equivalence for Circuits
δ-Equivalence for Circuits

C:

C'
δ-Equivalence for Circuits

C and C' are almost the same, except for a functionality equivalent sub-circuit of size $O(\log n)$
EF-Proofs imply δ-Equivalence

Poly. EF proof for $C_0(x) \iff C_1(x)$

\[
\begin{align*}
C_0 &\equiv C^{(1)} \\
C^{(2)} &\quad C^{(3)} \\
&\quad \vdots
\end{align*}
\]

$C^{(i)}$ and $C^{(i+1)}$ are δ-equivalent

$C^{(poly)} \equiv C_1$
Focus: iO for δ-Equivalent Ckts
Focus: iO for \(\delta\)-Equivalent Ckts

Assume iO for \(\delta\)-Equivalent Ckts: \(\delta iO\)
Focus: iO for δ-Equivalent Ckts

Assume iO for δ-Equivalent Ckts: δiO

$$\delta iO(C^{(1)}) \quad \delta iO(C^{(2)}) \quad \delta iO(C^{(3)}) \quad \ldots \quad \delta iO(C^{(\ell)})$$
Focus: iO for δ-Equivalent Ckts

Assume iO for δ-Equivalent Ckts: δiO

$$\delta iO(C^{(1)}) \approx \delta iO(C^{(2)}) \approx \delta iO(C^{(3)}) \ldots \delta iO(C^{(\ell_1)})$$
Focus: iO for δ-Equivalent Ckts

Assume iO for δ-Equivalent Ckts: δiO

\[
\delta iO(C^{(1)}) \approx \delta iO(C^{(2)}) \approx \delta iO(C^{(3)}) \ldots \delta iO(C^{(\ell)})
\]

\[
\Rightarrow \delta iO(C_0) \approx_c \delta iO(C_1)
\]
Focus: iO for δ-Equivalent Ckts

Assume iO for δ-Equivalent Ckts: δiO

$$\delta iO(C^{(1)}) \approx \delta iO(C^{(2)}) \approx \delta iO(C^{(3)}) \ldots \delta iO(C^{(\ell)})$$

$$\Rightarrow \delta iO(C_0) \approx_c \delta iO(C_1)$$

Total Security Loss = $\ell' \cdot$Loss of $\delta iO \quad (\ell' = poly)$
Focus: iO for δ-Equivalent Ckts

Assume iO for δ-Equivalent Ckts: δiO

$$
\delta iO(C^{(1)}) \approx \delta iO(C^{(2)}) \approx \delta iO(C^{(3)}) \ldots \delta iO(C^{(\ell)})
$$

$$
\Rightarrow \delta iO(C_0) \approx_c \delta iO(C_1)
$$

Total Security Loss = $\ell' \cdot \text{Loss of } \delta iO \quad (\ell' = \text{poly})$

If loss of δiO is independent of $|input|$, so is the total loss.
Constructing δiO
Constructing δiO
Constructing δiO

“Gate-by-Gate” Obfuscation:
Obfuscate each gate separately
Constructing δiO

“Gate-by-Gate” Obfuscation:
Obfuscate each gate separately
Constructing δiO

"Gate-by-Gate" Obfuscation: Obfuscate each gate separately

Topology is preserved
Constructing δ_{iO}

"Gate-by-Gate" Obfuscation:
Obfuscate each gate separately

Topology is preserved
Constructing δiO

“Gate-by-Gate” Obfuscation:
Obfuscate each gate separately

Topology is preserved
Security Proof w/o $2^{\|input\|}$-Loss
Security Proof w/o $2^{|input|}$-Loss

C:

C':

$C, C': \delta$-Equivalent
Security Proof w/o $2^{|input|}$-Loss

C, $C': \delta$-Equivalent
Security Proof w/o $2^{|input|}$-Loss

\mathcal{C}, \mathcal{C}': δ-Equivalent
Security Proof w/o 2^{input}-Loss

C, C': δ-Equivalent
Security Proof w/o $2^{|\text{input}|}$-Loss

$C, C': \delta$-Equivalent
Security Proof w/o $2^{|input|}$-Loss

Check all inputs to Sub-ckt

Security Loss: $2^{|\text{subckt input}|} = 2^{O(\log n)} = \text{poly}$!
Security Proof w/o $2^{\left|\text{input}\right|}$-Loss

C: C': δ-Equivalent

Check all inputs to Sub-ckt

Security Loss: $2^{\left|\text{subckt input}\right|} = 2^{O(\log n)} = \text{poly}$!
Security Proof w/o $2^{|input|}$-Loss

C:

C':

C, C': δ-Equivalent

Check all inputs to $\textbf{Sub-ckt}$

Security Loss: $2^{|\text{subckt input}|} = 2^{O(\log n)} = \text{poly}$!
Technical Details

• \mathcal{EF}-Proofs \Rightarrow δ-Equivalence
• Construct δiO
• iO for Turing machines
Technical Details

• \mathcal{EF}-Proofs \Rightarrow δ-Equivalence
• Construct δiO
• iO for Turing machines
Goal: \mathcal{EF}-Proofs \Rightarrow δ-Equivalence

Poly. \mathcal{EF} proof for $C_0(x) \leftrightarrow C_1(x)$

$C_0 \equiv C^{(1)}$

$C^{(2)}$

$C^{(3)}$

...

$C^{(poly)} \equiv C_1$

δ-equivalent
Goal: \mathcal{EF}-Proofs \Rightarrow δ-Equivalence

Poly. \mathcal{EF} proof for $C_0(x) \leftrightarrow C_1(x)$

Alternative View: A sequence of local changes
Key Observation

Proofs in logic systems are “local”
Key Observation

Proofs in logic systems are “local”
(Similar to δ-equivalence)
Key Observation

Proofs in logic systems are “local”
(Similar to δ-equivalence)

Each line in $\mathcal{E}\mathcal{F}$-proofs is also a circuit
(Can be used to modify circuits)
Stage I: Grow C_1

Add Gates in C_1 one-by-one
Stage I: Grow C_1

Add Gates in C_1 *one-by-one*

Set output as $C_0(x)$
Stage I: Grow C_1

Add Gates in C_1 one-by-one

Set output as $C_0(x)$

δ-Equivalence
When a gate is added, its output is not used anywhere
Stage I: Grow C_1

Add Gates in C_1 one-by-one

Set output as $C_0(x)$

δ-Equivalence
When a gate is added, its output is not used anywhere
Stage II: Grow the Proof

\mathcal{EF}-Proof of $C_0(x) \leftrightarrow C_1(x): \theta_1, \theta_2, \ldots, \theta_\ell$
Stage II: Grow the Proof

\mathcal{EF}-Proof of $C_0(x) \leftrightarrow C_1(x)$: $\theta_1, \theta_2, \ldots, \theta_\ell$
Stage II: Grow the Proof

\mathcal{EF}-Proof of $C_0(x) \leftrightarrow C_1(x)$: $\theta_1, \theta_2, \ldots, \theta_\ell$

Add θ_i one-by-one
Stage II: Grow the Proof

\mathcal{EF}-Proof of $C_0(x) \leftrightarrow C_1(x)$: $\theta_1, \theta_2, \ldots, \theta_\ell$

Add θ_i one-by-one
Stage II: Grow the Proof

\mathcal{EF}-Proof of $C_0(x) \leftrightarrow C_1(x)$: $\theta_1, \theta_2, \ldots, \theta_\ell$

Intuition: θ_i’s (i.e. lines of the proof) are “true”, so the functionality is preserved.
Stage II: \(\delta \)-Equivalence

\[i \text{-th Step: Add } \theta_i \]

Before: \(C_0(x) \land \theta_1 \land \cdots \land \theta_{i-1} \)

After: \(C_0(x) \land \theta_1 \land \cdots \land \theta_{i-1} \land \theta_i \)
Stage II: δ-Equivalence

i-th Step: Add θ_i

Before: $C_0(x) \land \theta_1 \land \cdots \land \theta_{i-1}$

After: $C_0(x) \land \theta_1 \land \cdots \land \theta_{i-1} \land \theta_i$

How θ_i is derived:
Stage II: δ-Equivalence

i-th Step: Add θ_i

Before: $C_0(x) \land \theta_1 \land \cdots \land \theta_{i-1}$

After: $C_0(x) \land \theta_1 \land \cdots \land \theta_{i-1} \land \theta_i$

How θ_i is derived:

- Axiom
Stage II: δ-Equivalence

i-th Step: Add θ_i

Before: $C_0(x) \land \theta_1 \land \ldots \land \theta_{i-1} \land 1$

After: $C_0(x) \land \theta_1 \land \ldots \land \theta_{i-1} \land \theta_i$

How θ_i is derived:

- Axiom
Stage II: δ-Equivalence

i-th Step: Add θ_i

Before: \[C_0(x) \land \theta_1 \land \cdots \land \theta_{i-1} \land 1 \]

After: \[C_0(x) \land \theta_1 \land \cdots \land \theta_{i-1} \land \theta_i \]

How θ_i is derived:

- Axiom \[1 \equiv \theta_i \text{ (Axioms are tautologies)} \]
Stage II: δ-Equivalence

i-th Step: Add θ_i

Before:
$$C_0(x) \land \theta_1 \land \cdots \land \theta_{i-1} \land 1$$

After:
$$C_0(x) \land \theta_1 \land \cdots \land \theta_{i-1} \land \theta_i$$

How θ_i is derived:

- Axiom
Stage II: δ-Equivalence

i-th Step: Add θ_i

Before:

\[
C_0(x) \land \theta_1 \land \cdots \land \theta_{i-1} \land 1
\]

After:

\[
C_0(x) \land \theta_1 \land \cdots \land \theta_{i-1} \land \theta_i
\]

How θ_i is derived:

- Axiom
- Inference Rule: Modus Ponens ($p, p \rightarrow q \vdash q$)
Stage II: δ-Equivalence

i-th Step: Add θ_i.

Before:

After:

How θ_i is derived:

- Axiom
- Inference Rule: Modus Ponens ($p, p \to q \vdash q$)
Stage II: δ-Equivalence

i-th Step: Add θ_i.

Before: $C_0(x) \land p \land \cdots \land (p \rightarrow q) \land \cdots$

After: $C_0(x) \land p \land \cdots \land (p \rightarrow q) \land \cdots \land q$

How θ_i is derived:

- Axiom
- Inference Rule: Modus Ponens $(p, p \rightarrow q \vdash q)$
Stage II: δ-Equivalence

i-th Step: Add θ_i

Before: $C_0(x) \land p \land \cdots \land (p \rightarrow q) \land \cdots$

After: $C_0(x) \land p \land \cdots \land (p \rightarrow q) \land \cdots \land q$

How θ_i is derived:

- Axiom
- Inference Rule: Modus Ponens $(p, p \rightarrow q \vdash q)$

\[p \land (p \rightarrow q) \equiv p \land (p \rightarrow q) \land q \]
Stage III: **Switch** o_0 to o_1

$$o_0 \land \theta_1 \land \cdots \land \theta_\ell$$
Stage III: Switch o_0 to o_1

\[o_0 \land \theta_1 \land \cdots \land \theta_\ell \]
\[o_1 \land \theta_1 \land \cdots \land \theta_\ell \]
Stage III: Switch o_0 to o_1

δ-Equivalence

θ_ℓ is “$o_0 \leftrightarrow o_1$” (A proof of $C_0(x) \leftrightarrow C_1(x)$ must end with $o_0 \leftrightarrow o_1$)
Stage III: Switch o_0 to o_1

\[o_0 \land \theta_1 \land \cdots \land \theta_\ell \]

δ-Equivalence

θ_ℓ is "$o_0 \leftrightarrow o_1$" (A proof of $C_0(x) \leftrightarrow C_1(x)$ must end with $o_0 \leftrightarrow o_1$)

\[o_0 \land (o_0 \leftrightarrow o_1) \equiv o_1 \land (o_0 \leftrightarrow o_1) \]
Stage IV: **Shrink** the Proof

\[o_1 \land \theta_1 \land \cdots \land \theta_\ell \]
Stage IV: Shrink the Proof

C_0

C_1

$o_0 \land \theta_1 \land \cdots \land \theta_\ell$

Delete θ_i

one-by-one
Stage IV: **Shrink the Proof**

\[o_0 \wedge \theta_1 \wedge \cdots \wedge \theta_\ell \]

Delete \(\theta_i \) one-by-one
Stage IV: **Shrink the Proof**

\[C!_0 \mid C!_1 \]

\[o_0 \mid o_1 \wedge \theta_1 \wedge \ldots \wedge \theta_\ell \]

Delete \(\theta_i \) \(\text{one-by-one} \)

\[C_0 \mid C_1 \]

\(\delta\)-Equivalence: Similar to “Growing the proof” Stage
Stage V: Shrink C_0
Stage V: Shrink C_0
Stage V: **Shrink** C_0

Delete C_0 gate-by-gate
Stage V: *Shrink* C_0

Delete C_0 *gate-by-gate*
Stage V: \textbf{Shrink} \mathcal{C}_0

\textcolor{blue}{δ-Equivalence:}
Before we delete a gate, the output of that gate is never used.
More Details: **Multi-Arity Gates?**

We Use: Multi-arity \land-Gate

$$C_0(x) \land \theta_1 \land \theta_2 \ldots \land \theta_\ell$$
More Details: **Multi-Arity Gates?**

We Use: Multi-arity \land-Gate

$$C_0(x) \land \theta_1 \land \theta_2 ... \land \theta_\ell$$

δiO: Only Support $O(1)$-arity Gates

iO for Ckts
More Details: **Multi-Arity Gates?**

We Use: Multi-arity \(\land \)-Gate

\[
C_0(x) \land \theta_1 \land \theta_2 \ldots \land \theta_\ell
\]

Arity-2 \(\land \)-Tree

\[
\begin{array}{c}
\land \\
C_0(x) \quad \theta_1 \quad \ldots \quad \theta_\ell
\end{array}
\]

\(\delta\text{i}O\): Only Support \(O(1) \)-arity Gates

\[
\begin{array}{c}
\land \\
iO \text{ for Ckts}
\end{array}
\]
Technical Details

- \mathcal{EF}-Proofs \Rightarrow δ-Equivalence
- Construct δiO
- iO for Turing machines
Gate-by-Gate Obfuscation
Gate-by-Gate Obfuscation

\[g_i O (G_{a t e_g}) \]

\[\delta i O \]
Gate-by-Gate Obfuscation

\[
\delta iO : \text{Secret key encryption under key } K
\]

\[
iO(Gate_g)
\]
Gate-by-Gate Obfuscation

\[\text{Gate}_g(\begin{array}{c} m_l \\ K_l \end{array}, \begin{array}{c} m_r \\ K_r \end{array}) \]

Decrypt \(m_l, m_r \)
\[m_o = g(w_l, w_r) \]

Output: \(m_o^{K_o} \)

\(\Box \): Secret key encryption under key \(K \)

Input/output:
\(\delta_iO \)

\(iO(\text{Gate}_g) \)
Mix-and-Match Attack
Mix-and-Match Attack

Input: x
Mix-and-Match Attack

Input: x

Input: x'

...
Mix-and-Match Attack

Input: x

Mix-n-Match

Input: x'
Mix-and-Match Attack

Input: x

Input: x'

Mix-n-Match
Mix-and-Match Attack

Input: x

Mix-n-Match

Input: x'

The obfuscated gate reveals more info than it should do.
Add Authentication
Add Authentication

∀ wire w, sign ct_w with x:

$$\sigma_w := MAC_{K_w}(ct_w || x)$$
Add Authentication

∀ wire w, sign ct_w with x:

$\sigma_w := MAC_{K_w}(ct_w || x)$

\[Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, x) \]

Verify MAC σ_l, σ_r w.r.t. l, r

...(Decrypt, compute g, and re-encrypt)...

Also sign and output σ_o w.r.t. o
Add Authentication

∀ wire w, sign ct_w with x:

$$\sigma_w := MAC_{K_w}(ct_w || x)$$

\[
\text{Gate}_g\left(ct_l, ct_r, \sigma_l, \sigma_r, x\right)
\]

Verify MAC σ_l, σ_r w.r.t. l, r

...(Decrypt, compute g, and re-encrypt)...

Also sign and output σ_o w.r.t. o

x is too long!
Add Authentication

∀ wire w, sign ct_w with x:
\[
\sigma_w := MAC_{K_w}(ct_w || x)
\]

Verify MAC σ_l, σ_r w.r.t. l, r

...(Decrypt, compute g, and re-encrypt)...

Also sign and output σ_o w.r.t. o

$\text{Gate}_g (ct_l, ct_r, \sigma_l, \sigma_r, x)$

x is too long!

Gate g may not depend on the entire x
(e.g. NC^0 circuits)
Define Dependence

\[\text{Dep}(l) \]

\[\text{Dep}(r) \]
Define Dependence

\[\text{Dep}(l) := \{w \mid l \text{ depends on wire } w\} \]
Define Dependence

\[
\text{Dep}(l) : = \{ w \mid l \text{ depends on wire } w \}
\]

\[
CT_l : = \{ \text{ciphertext of } w \}_{w \in \text{Dep}(l)} \text{ (An Index Set)}
\]
Define Dependence

\[\text{Dep}(l) := \{ w | l \text{ depends on wire } w \} \]

\[CT_l := \{ \text{ciphertext of } w \}_w \in \text{Dep}(l) \text{ (An Index Set)} \]

\[(\text{Dep}(r), CT_r: \text{Similar}) \]
Use CT_l, CT_r in $Gate_g$

$$Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, CT_l, CT_r)$$

Check $\sigma_l =? MAC_{k_l}(ct_l || CT_l)$
Check $\sigma_r =? MAC_{k_r}(ct_r || CT_r)$

...(Decrypt, compute g, and re-encrypt)...
Use CT_l, CT_r in $Gate_g$

$Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, CT_l, CT_r)$

Check $\sigma_l =? MAC_{k_l}(ct_l||CT_l)$
Check $\sigma_r =? MAC_{k_r}(ct_r||CT_r)$

Check **consistency** of CT_l and CT_r

...(Decrypt, compute g, and re-encrypt)...

Dep(l) Dep(r)

g
Use CT_l, CT_r in $Gate_g$

$Gate_g(\text{ct}_l, \text{ct}_r, \sigma_l, \sigma_r, CT_l, CT_r)$

- Check $\sigma_l = \text{MAC}_{k_l}(\text{ct}_l || CT_l)$
- Check $\sigma_r = \text{MAC}_{k_r}(\text{ct}_r || CT_r)$
- Check consistency of CT_l and CT_r

...(Decrypt, compute g, and re-encrypt)...

CT_l and CT_r are Consistent:

CT_l, CT_r contains same ciphertexts in $\text{Dep}(l) \cap \text{Dep}(r)$
Proof of Security (High Level)

For any \(\delta \)-Equivalent Ckts:

\[C_0 \quad C_1 \]
Proof of Security (High Level)

For any δ-Equivalent Ckts:

$\delta iO(C_0)$
Proof of Security (High Level)

For any \(\delta \)-Equivalent Ckts:

\[\delta iO(C_0) \]

\[C_0 \]

\[C_1 \]
Proof of Security (High Level)

For any δ-Equivalent Ckts:

$\delta iO(C_0)$

Direct-Gate$_g(\text{ct}_l, \text{ct}_r, \sigma_l, \sigma_r, \text{CT}_l, \text{CT}_r)$

...(check MACs & consistency)...

...(encrypt output wire)...

C_0

C_1
Proof of Security (High Level)

For any δ-Equivalent Ckts:

$\delta iO(C_0)$

$\text{Direct-Gate}_g(\text{ct}_l, \text{ct}_r, \sigma_l, \sigma_r, CT_l, CT_r)$

...(check MACs & consistency)...

Sub-ckt.input \leftarrow Decryt (CT_l, CT_r)

...(encrypt output wire)...

C_0

C_1
Proof of Security (High Level)

For any \(\delta \text{-Equivalent Ckts:} \)

\[
\delta iO(C_0)
\]

\[
\text{Direct-Gate}_g(ct_l, ct_r, \sigma_l, \sigma_r, CT_l, CT_r)
\]

...(check MACs & consistency)...

\[
\text{Sub-ckt.input} \leftarrow \text{Decryt} (CT_l, CT_r)
\]

\boxed{\text{Directly Compute Sub-ckt(sub-ckt.input)}}

...(encrypt output wire)...

\[C_0\]

\[C_1\]
Proof of Security (High Level)

For any \(\delta\)-Equivalent Ckts:

\[
\delta iO(C_0) \approx MAC\ security
\]

Direct Gate \(g(ct_l, ct_r, \sigma_l, \sigma_r, CT_l, CT_r)\)

...(check MACs & consistency)...

Sub-ckt.input \(\leftarrow\) Decryt \((CT_l, CT_r)\)

Directly Compute Sub-ckt(sub-ckt.input)

...(encrypt output wire)...

For any \(\delta\)-Equivalent Ckts:
Proof of Security (High Level)

\[\delta iO(C_0) \approx \text{MAC security} \]

Sub-ckt: Direct-Gates
Proof of Security (High Level)

\[\delta iO(C_0) \approx \text{MAC security} \approx \text{Sub-ckt: Direct-Gates} \approx \text{iO Security} \]

(□ ≡ □)
Proof of Security (High Level)

\[\delta iO(C_0) \approx MAC \text{ security} \]

Sub-ckt: Direct-Gates

\[\approx \]

Sub-ckt: Direct-Gates but use \(C_1 \)

iO Security

\(\equiv \)
Proof of Security (High Level)

\[\delta_{iO}(C_0) \approx \text{MAC security} \]
\[\approx \text{Sub-ckt: Direct-Gates} \]
\[\approx \text{iO Security} \]
\[(\equiv) \]
\[\approx \text{Sub-ckt: Direct-Gates but use } C_1 \]
\[\approx \delta_{iO}(C_1) \]
Proof of Security (High Level)

Extend this idea to general circuits?

Challenge: |CT₁| is too large.

\[\delta_{iO}(C₀) \approx \text{MAC security} \]

\[\approx \quad \text{Sub-ckt: Direct-Gates} \]

\[\approx \quad \text{iO Security} \]

\[(\quad \equiv \quad) \]

\[\delta_{iO}(C₁) \approx \quad \text{Sub-ckt: Direct-Gates but use } C₁ \]
Proof of Security (High Level)

Extend this idea to general circuits?

Challenge: $|CT_l|$ is too large.

$\delta iO(C_0) \approx \text{MAC security}
\approx \text{Sub-ckt: Direct-Gates}
\approx \text{iO Security}
(\equiv)
\approx \delta iO(C_1)$

Observation: g only depends on sub-ckt input

Sub-ckt: Direct-Gates but use C_1
Somewhere **Statistical** Binding (SSB) Hash

[Hubacek-Wichs’15, Okamoto-Pietrzak-Waters-Wichs’15]
Somewhere **Statistical** Binding (SSB) Hash

[Hubacek-Wichs’15, Okamoto-Pietrzak-Waters-Wichs’15]

Normal Mode

\[K \]
Somewhere Statistical Binding (SSB) Hash

[Hubacek-Wichs’15, Okamoto-Pietrzak-Waters-Wichs’15]

<table>
<thead>
<tr>
<th>Normal Mode</th>
<th>≈ c</th>
<th>Trapdoor Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td></td>
<td>$K^*(S \subseteq [n])$</td>
</tr>
</tbody>
</table>
Somewhere **Statistical Binding (SSB) Hash**

[Hubacek-Wichs’15, Okamoto-Pietrzak-Waters-Wichs’15]

\[
\begin{array}{c|c}
\text{Normal Mode} & \text{Trapdoor Mode} \\
K & K^*(S \subseteq [n]) \\
\end{array}
\]

\[h \leftarrow \text{SSB}(K, m_1, m_2, \ldots, m_n) \]
Somewhere **Statistical Binding** (SSB) Hash
[Hubacek-Wichs’15, Okamoto-Pietrzak-Waters-Wichs’15]

\[
\begin{align*}
\text{Normal Mode} & \quad K \quad \approx_c \quad \text{Trapdoor Mode} \\
 & \quad K^\ast(S \subseteq [n]) \\
\end{align*}
\]

\[
\begin{align*}
\text{Normal Mode} & \quad h \leftarrow \text{SSB}(K,m_1,m_2,\ldots,m_n) \\
\text{Trapdoor Mode} & \quad h \leftarrow \text{SSB}(K^\ast, m_1, m|_S, \ldots, m_n)
\end{align*}
\]
Somewhere **Statistical Binding (SSB) Hash**

[Hubacek-Wichs’15, Okamoto-Pietrzak-Waters-Wichs’15]

\[h \leftarrow \text{SSB}(K, m_1, m_2, \ldots, m_n) \]

\[h \leftarrow \text{SSB}(K^*, m_1, m|_S, \ldots, m_n) \]

In Our Setting: \((S := \{\text{input wires to sub-ckt}\})\)
SSB Hash CT_l, CT_r

Outside $Gate_g$:

$$h_l = SSB(CT_l)$$
$$h_r = SSB(CT_r)$$

$Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, CT_l, CT_r)$

Check $\sigma_l =? MAC_{k_l}(ct_l || CT_l)$
Check $\sigma_r =? MAC_{k_r}(ct_r || CT_r)$

...(Decrypt, compute g, and re-encrypt)...)
SSB Hash CT_l, CT_r

Outside $Gate_g$:

$h_l = SSB(CT_l)$
$h_r = SSB(CT_r)$

$Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, \ldots)$

Check $\sigma_l = ? MAC_{k_l}(ct_l || CT_l)$
Check $\sigma_r = ? MAC_{k_r}(ct_r || CT_r)$

...(Decrypt, compute g, and re-encrypt)
SSB Hash CT_l, CT_r

Outside $Gate_g$:

$$h_l = SSB(CT_l)$$
$$h_r = SSB(CT_r)$$

$Gate_g(\text{ct}_l, \text{ct}_r, \sigma_l, \sigma_r, h_l, h_r)$

Check $\sigma_l = ? MAC_{k_l}(\text{ct}_l || CT_l)$

Check $\sigma_r = ? MAC_{k_r}(\text{ct}_r || CT_r)$

...(Decrypt, compute g, and re-encrypt)...
SSB Hash CT_l, CT_r

Outside* $Gate_g$:

- $h_l = SSB(CT_l)$
- $h_r = SSB(CT_r)$

$Gate_g(\text{ct}_l, \text{ct}_r, \sigma_l, \sigma_r, h_l, h_r)$

- Check $\sigma_l = ? MAC_{k_l}(\text{ct}_l ||)$
- Check $\sigma_r = ? MAC_{k_r}(\text{ct}_r ||)$

...(Decrypt, compute g, and re-encrypt)
SSB Hash CT_l, CT_r

Outside $Gate_g$:

\[
\begin{align*}
 h_l &= SSB(CT_l) \\
 h_r &= SSB(CT_r)
\end{align*}
\]

\[
Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, h_l, h_r)
\]

Check $\sigma_l =? MAC_{k_l}(ct_l || h_l)$

Check $\sigma_r =? MAC_{k_r}(ct_r || h_r)$

...(Decrypt, compute g, and re-encrypt)
SSB Hash CT_l, CT_r

Outside $Gate_g$:

\[
\begin{aligned}
 h_l &= SSB(CT_l) \\
 h_r &= SSB(CT_r)
\end{aligned}
\]

\[
\begin{aligned}
 Gate_g(\text{ct}_l, \text{ct}_r, \sigma_l, \sigma_r, \ h_l, h_r)
\end{aligned}
\]

- Check $\sigma_l = ? MAC_{k_l}(\text{ct}_l|| h_l)$
- Check $\sigma_r = ? MAC_{k_r}(\text{ct}_r|| h_r)$

Check consistency of CT_l and CT_r

...(Decrypt, compute g, and re-encrypt)
SSB Hash CT_l, CT_r

Outside Gate: G_{outside}

$$h_l = SSB(CT_l)$$
$$h_r = SSB(CT_r)$$

Gate $G_{\text{in}}(ct_l, ct_r, \sigma_l, \sigma_r, h_l, h_r)$

- Check $\sigma_l = \overset?= MAC_{k_l}(ct_l|| h_l)$
- Check $\sigma_r = \overset?= MAC_{k_r}(ct_r|| h_r)$

Check consistency of CT_l and CT_r???

...(Decrypt, compute g, and re-encrypt)
SSB Hash CT_l, CT_r

Outside Gate g:

$h_l = SSB(CT_l)$

$h_r = SSB(CT_r)$

$Gate_g(ctl, ctr, \sigma_l, \sigma_r, h_l, h_r)$

Check $\sigma_l = ? MAC_{k_l}(ct_l || h_l)$

Check $\sigma_r = ? MAC_{k_r}(ct_r || h_r)$

Check consistency of CT_l and CT_r???

...(Decrypt, compute g, and re-encrypt)...

SNARGs?
No Statistical Soundness
SSB Hash CT_l, CT_r

Outside $Gate_g$:

$$h_l = SSB(CT_l)$$

$$h_r = SSB(CT_r)$$

$Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, h_l, h_r)$

Check $\sigma_l = ? MAC_{k_l}(ct_l || h_l)$

Check $\sigma_r = ? MAC_{k_r}(ct_r || h_r)$

Check consistency of CT_l and CT_r???

...(Decrypt, compute g, and re-encrypt)...

SNARGs?

No Statistical Soundness

Consistency for sub-ckt input (binding positions) is enough
Recall: SNARGs for Batch-Index
[Choudhuri-Jain-Jin’21]

Index Language: $L = \{i | \exists w: C(i, w) = 1\}$
Recall: SNARGs for Batch-Index
[Choudhuri-Jain-Jin’21]

Index Language: \(L = \{i|\exists w: C(i, w) = 1\} \)
Recall: SNARGs for Batch-Index
[Choudhuri-Jain-Jin’21]

Index Language: $L = \{i | \exists w: C(i, w) = 1\}$

CRS → “1, 2, ... $k \in L$” → CRS
Recall: SNARGs for Batch-Index
[Choudhuri-Jain-Jin’21]

Index Language: $L = \{i | \exists w: C(i, w) = 1\}$

Verify in time $\text{poly}(\lambda, |C|, \log k)$
Recall: SNARGs for Batch-Index
[Choudhuri-Jain-Jin’21]

Index Language: $L = \{i | \exists w: C(i, w) = 1\}$

CRS

“1, 2, ... $k \in L$”

Verify in time $\text{poly}(\lambda, |C|, \log k)$

Accept/Reject
Recall: SNARGs for Batch-Index
[Choudhuri-Jain-Jin’21]

Index Language: $L = \{i | \exists w: C(i, w) = 1\}$

Completeness:
If $[k] \subseteq L$, honestly generated proof will be accepted.
Somewhere Statistical Soundness

<table>
<thead>
<tr>
<th>Normal Mode</th>
<th>\approx_c</th>
<th>Trapdoor Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRS</td>
<td>\approx_c</td>
<td>$CRS^*(S)$</td>
</tr>
</tbody>
</table>
Somewhere Statistical Soundness

Normal Mode

\[CRS \approx_c CRS^*(S) \]

Trapdoor Mode
Somewhere Statistical Soundness

\[CRS \approx_c CRS^*(S) \]
Somewhere Statistical Soundness

Normal Mode

\[CRS \]

\[\approx_c \]

Trapdoor Mode

\[CRS^* (S) \]
Somewhere Statistical Soundness

\[
\begin{array}{ccc}
\text{Normal Mode} & \approx_c & \text{Trapdoor Mode} \\
CRS & & CRS^*(S)
\end{array}
\]

Statistical Sound for S:
If $S \subseteq L$ does not hold, then unbounded adv. can’t find cheating proof.
Construct Succinct Proof of Consistency
Construct Succinct Proof of Consistency

SSB by Merkle Tree

SSB(CT_l)

c_{t1} c_{t2} c_{tN}

SSB(CT_r)

c_{t1}' c_{tN}'
Construct Succinct Proof of Consistency

SSB by Merkle Tree

\[\text{Prove: } \forall w \in [N], \exists \text{ local openings } \& \ ct_w, ct'_w \text{ s.t.} \]
\[\text{if } ct_w \neq \bot \land ct'_w \neq \bot, \text{ then } ct_w = ct'_w \text{ (consistent)} \]
Construct Succinct Proof of Consistency

SSB by Merkle Tree

Prove: \(\forall w \in [N], \exists \) local openings \& \(ct_w, ct_w' \) s.t. if \(ct_w \neq \bot \land ct_w' \neq \bot \), then \(ct_w = ct_w' \) (consistent)

Proof via SNARGs for Batch-Index
Add **Proof** of Consistency

Outside $Gate_g$:

\[
\begin{align*}
 h_l &= SSB(CT_l) \\
 h_r &= SSB(CT_r)
\end{align*}
\]

\[Gate_g(\text{ct}_l, \text{ct}_r, \pi_l, \pi_r, h_l, h_r, \pi)\]

...(Verify the MACs)...

...(Decrypt, compute g, and re-encrypt)....
Add **Proof** of Consistency

Outside $Gate_g$:

- $h_l = SSB(CT_l)$
- $h_r = SSB(CT_r)$

π : consistency proof for h_l, h_r

$Gate_g(ct_l, ct_r, \sigma_l, \sigma_r, h_l, h_r, \pi)$

...(Verify the MACs)...

...(Decrypt, compute g, and re-encrypt)......
Add Proof of Consistency

Outside $Gate_g$:

- $h_l = SSB(CT_l)$
- $h_r = SSB(CT_r)$

π: consistency proof for h_l, h_r

$\text{Gate}_g(\text{ct}_l, \text{ct}_r, \sigma_l, \sigma_r, h_l, h_r, \pi)$

...(Verify the MACs)...

Verify the proof π w.r.t. h_l, h_r

...(Decrypt, compute g, and re-encrypt)....
Technical Details

- \mathcal{EF}-Proofs \Rightarrow δ-Equivalence
- Construct δiO
- iO for Turing machines
Recall: Cook’s Translation
Recall: Cook’s Translation

Poly-size \mathcal{EF}-Proofs $\xrightarrow{\text{Cook’s Translation}}$ Proofs in PV
Recall: Cook’s Translation

Poly-size \mathcal{EF}-Proofs $\vdash 01 \ M \ "x = M/ (x)"

Cook’s Translation

Proofs in PV

$\vdash_{PV} M_1(x) = M_2(x)$
Recall: Cook’s Translation

Poly-size \mathcal{EF}-Proofs $\vdash_{\text{PV}} M_1(x) = M_2(x)$

Cook’s Translation

Proofs in PV

Input length n
Recall: Cook’s Translation

Poly-size \mathcal{EF}-Proofs $\vdash_{\mathcal{EF}} C_{1,n}(x) \leftrightarrow C_{2,n}(x)$

Cook’s Translation

Input length n

Proofs in PV $\vdash_{PV} M_1(x) = M_2(x)$

$C_{b,n}(x)$: Circuit that computes M_b for input $|x| = n$.
Recall: Cook’s Translation

Poly-size \mathcal{EF}-Proofs $\vdash_{\mathcal{EF}} C_{1,n}(x) \leftrightarrow C_{2,n}(x)$

Cook’s Translation

Proofs in PV $\vdash_{PV} M_1(x) = M_2(x)$

Input length n

$C_{b,n}(x)$: Circuit that computes M_b for input $|x| = n$.
Recall: Cook’s Translation

Poly-size \mathcal{EF}-Proofs $\vdash 01 M \to x = M/(x)$ $\vdash \mathcal{F} C \to C/(x)$

Proofs in PV

Input length n

$\vdash_{\mathcal{F}} C_{1,n}(x) \leftrightarrow C_{2,n}(x)$

$\vdash_{PV} M_1(x) = M_2(x)$

$C_{b,n}(x)$: Circuit that computes M_b for input $|x| = n$.

Use δiO?
iO for TMs \textit{from} \textit{\$iO\$}
iO for TMs \textbf{from} \(\delta iO \)

\(M \)

Turing Machine
iO for TMs from δ_{iO}

$N_0 = \lambda^{\log \lambda}$

All input length $n \leq N_0$
iO for TMs from δiO

M
Turing Machine

\begin{align*}
(N_0 &= \lambda^{\log \lambda}) \\
\text{All Input length} &\Rightarrow n \leq N_0
\end{align*}

C_1
C_2
\ldots
C_{N_0}
iO for TMs from δiO

M

Turing Machine

$(N_0 = \lambda^{\log \lambda})$

All Input length $n \leq N_0$

C_1

C_2

\ldots

C_{N_0}

δiO
iO for TMs from δiO

M Turing Machine

\forall Input length $n \leq N_0$

$(N_0 = \lambda^{\log \lambda})$

C_1

C_2

\ldots

C_{N_0}

$\delta iO(C_1)$

$\delta iO(C_2)$

\ldots

$\delta iO(C_{N_0})$

Obfuscated Program
iO for TMs from δiO

M Turing Machine

$N_0 = \lambda^{\log \lambda}$

All Input length $n \leq N_0$

C_1, C_2, ..., C_{N_0}

$\delta iO(C_1)$, $\delta iO(C_2)$, ..., $\delta iO(C_{N_0})$

Obfuscation time is super-poly!

Obfuscated Program
Efficient Construction
Efficient Construction

$C_1, C_2, \ldots, C_{N_0}$ have a succinct description
Efficient Construction

$C_1, C_2, \ldots, C_{N_0}$ have a succinct description

i.e. \exists circuit $[M](\cdot, \cdot)$, s.t. $[M](n, i)$ outputs the description of i-th gate in C_n
Efficient Construction

$C_1, C_2, \ldots, C_{N_0}$ have a succinct description

i.e. \exists circuit $[M](\cdot, \cdot)$, s.t. $[M](n, i)$ outputs the description of i-th gate in C_n

Recall: δiO Construction

$g_1, g_2, \ldots, g_{|C|}$ $\xrightarrow{\delta iO}$ $iO(Gate_{g_1})$ $iO(Gate_{g_2})$ \ldots $iO(Gate_{g_{|C|}})$

Generate $Gate_g$ from $[M](\cdot, \cdot)$
Efficient Construction
Efficient Construction

M

Turing Machine
Efficient Construction

M

Turing Machine
Efficient Construction

\[M \quad \text{Turing Machine} \quad \rightarrow \quad UGate(\cdot;\cdot;\cdot) \]
Efficient Construction

M Turing Machine $\rightarrow UGate(\cdot,\cdot,\cdot) \rightarrow iO(UGate)$ (iO for small circuit)
Efficient Construction

\(M \)

Turing Machine \(\rightarrow \)

\(UGate(\cdot,\cdot,\cdot) \)

\(\rightarrow \)

\(iO(UGate) \)

(iO for small circuit)

"Uniform" Gate \(UGate(n, i, input') \)

Get description of \(i \)-th gate:

\[g \leftarrow [M](n, i) \]

Emulate

\[Gate_g(input') \]
Summary & Future Directions
Summary & Future Directions

Inference Rules in Logic systems for Proving Equivalence
Summary & Future Directions

Inference Rules in Logic systems for Proving Equivalence
Summary & Future Directions

Inference Rules in **Logic systems** for Proving Equivalence

Techniques to argue Indistinguishability for iO
Summary & Future Directions

Inference Rules in Logic systems for Proving Equivalence

Techniques to argue Indistinguishability for iO

\mathcal{EF} / PV
Summary & Future Directions

Inference Rules in Logic systems for Proving Equivalence

Techniques to argue Indistinguishability for iO

ℰℱ / PV
Summary & Future Directions

Inference Rules in Logic systems for Proving Equivalence

Techniques to argue Indistinguishability for iO

\(\mathcal{EF} / PV \) \hspace{2cm} \(\delta \)-equivalence & \(\delta iO \)
Summary & Future Directions

Inference Rules in Logic systems for Proving Equivalence

Techniques to argue Indistinguishability for iO

\(\mathcal{EF} / PV \)

\(\delta \)-equivalence & \(\delta iO \)

ZFC
(Zermelo-Fraenkel set theory with axiom of Choice)