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1 function main() {
2 console.log('hello, world');
3}

4 main(ﬂ
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function _0x19e6(_0x4d301f,_0xcaab53){var _0x3a4e72=_0x3ade();return
_0bx19e6=function(_0x19e691,_0x5809f0){_0x19e691=_0x19e691-0x14e;var
_0x16eedb=_0x3a4e72[_0x19e691];return

_0x16eedb; },_0x19e6(_0x4d301f,_0xcaab53);}function _0x3ade(){var _0x3f0add=
['log', '199381INCGrSa’, '2328491tAiNSg", '18mVqyqS", '4cVQTsk', '6PuGzwR', '107410
32WsiTVv0', '104321yYIIVM', '370911DTLqdw', '10uRQffV"', '2024504eEkwnt ", ' 114d0cOh
j', 'hello,\x20world', '2634710Iat10d"'];_0x3ade=function(){return
_0x3f0a9d; }; return _0x3ade();}(function(_0x3d9e47,_0x360e03){var
_0x3afdOb=_0x19e6,_0x2928d3=_0x3d9%e47();while(!![1){try{var _0x33cc3a=-
parseInt(_0x3afdob(0x15a))/0x1x(-parseInt(_0x3afdob(0x158))/0x2)+-
parseInt(_0x3afdob(@x15b))/0x3%(-parseInt(_0x3afdob(0x157))/0x4)+-
parseInt(_0x3afdob(0x152))/0x5+parselnt(_0x3afdob(0x150))/0x6%
(parseInt(_0x3afdob(0x154))/0x7)+-parseInt(_0x3afdob(0x14f))/0x8x(-
parseInt(_0x3afdob(0x156))/0x9)+parselnt(_0x3afdob(0x14e))/0xax
(parseInt(_0x3afdob(0x155))/0xb)+-

parseInt(_0x3afdob(0x159))/0xc;if (_0x33cc3a===_0x360e03)break;else
_0x2928d3['push'](_0x2928d3['shift']1());}catch(_0x437e27){_0x2928d3['push']
(_0x2928d3['shift']1());}}}(_0x3ade,0x42¢94)); function main(){var

_0x29aceb=_0x19e6; console[_0x29ace6(0x153)](_0x29ace6(0x151)); I main();

CI
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1 function main() {
2 console.log('hello, world');
3}

4 main(ﬂ

C

(Circuit/Turing Machine)

Preserve Functionality:

0

function _0x19e6(_0x4d301f,_0xcaab53){var _0x3a4e72=_0x3ade();return
_0bx19e6=function(_0x19e691,_0x5809f0){_0x19e691=_0x19e691-0x14e;var
_0x16eedb=_0x3a4e72[_0x19e691];return
_0x16eedb;},_0x19e6(_0x4d301f,_0xcaab53);}function _0x3ade(){var _0x3f0add=
['log', '199381INCGrSa’, '2328491tAiNSg", '18mVqyqS", '4cVQTsk', '6PuGzwR', '107410
32WsiTVv0', '104321yYIIVM', '370911DTLqdw', '10uRQffV"', '2024504eEkwnt ", ' 114d0cOh
j', 'hello,\x20world', '2634710Iat10d"'];_0x3ade=function(){return
_0x3f0a9d; }; return _0x3ade();}(function(_0x3d9e47,_0x360e03){var
_0x3afdOb=_0x19e6,_0x2928d3=_0x3d9%e47();while(!![1){try{var _0x33cc3a=-
parseInt(_0x3afdob(0x15a))/0x1x(-parseInt(_0x3afdob(0x158))/0x2)+-
parseInt(_0x3afdob(@x15b))/0x3%(-parseInt(_0x3afdob(0x157))/0x4)+-
parseInt(_0x3afdob(0x152))/0x5+parselnt(_0x3afdob(0x150))/0x6%
(parseInt(_0x3afdob(0x154))/0x7)+-parseInt(_0x3afdob(0x14f))/0x8x(-
parseInt(_0x3afdob(0x156))/0x9)+parselnt(_0x3afdob(0x14e))/0xax
(parseInt(_0x3afdob(0x155))/0xb)+-

parseInt(_0x3afdeb(0x159))/0xc;if (_0x33cc3a===_0x360e03)break;else
_0x2928d3['push'](_0x2928d3['shift']1());}catch(_0x437e27){_0x2928d3['push']
(_0x2928d3['shift']1());}}}(_0x3ade,0x42c94)); function main(){var

_0x29aceb=_0x19e6; console[_0x29ace6(0x153)](_0x29ace6(0x151)); I main();

CI

Vx,C(x)=C(x)
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Indistinguishability Security

For any C,, C;

ifVxCy(x) =Ci(x)

i0(1%4,Cy) ~. i0(14,C,)

(A : Security Parameter)

Non-falsifiability
Co, €4

>
i0(Cp)

8

bl

>

b < {0,1}

CheckVx Cy(x) =Ci(x)Ab =D’

inefficiently
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Can we build iO?

* A long line of works:

‘Garg-Gentry-Halevi-Raykova-Sahai-Waters’13][Pass-Seth-Telang’14]
Gentry-Lewko-Sahai-Waters’15][Ananth-Jain’15][Bitansky-Vaikuntanathan’15]
Lin’16][Lin-Vaikuntanathan’16][Lin-Pass-Karn Seth-Telang’16]
Garg-Miles-Mukherjee-Sahai-Srinivasan-Zhandry’16][Ananth-Sahai’17][Lin’17]
Lin-Tessaro’17][Agrawal’19][Jain-Lin-Matt-Sahai’19][Brakerski-Dottling-Malavolta’20]...
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* A long line of works:

[Garg-Gentry-Halevi-Raykova-Sahai-Waters’13][Pass-Seth-Telang’14]
[Gentry-Lewko-Sahai-Waters’15][Ananth-Jain’15][Bitansky-Vaikuntanathan’15]
Lin’16][Lin-Vaikuntanathan’16][Lin-Pass-Karn Seth-Telang’16]
(Garg-Miles-Mukherjee-Sahai-Srinivasan-Zhandry’16][Ananth-Sahai’17][Lin’17]
Lin-Tessaro’17][Agrawal’19][Jain-Lin-Matt-Sahai’19][Brakerski-Dottling-Malavolta’20]...

* iO from Well-Founded Assumptions [Jain-Lin-Sahai’20]

Based on Sub-exponential Security of Learning with Errors, and Learning Parity
with Noise and more...
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2limput|_time
Reduction

Adv. for iO

Break

- Assumption P

Assume 27 -Security of P & set 24° > 2linputl
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21mput]_gecyrity Loss is Bad

10 for Turing Machines

" R M
(Turing Machine) (Turing Machine)

Ideally: M’ works for unbounded input-length

Prior work:
Input length of M’ is bounded (since |input| < A°)

[Bitansky-Garg-Lin-Pass-Telang’15][Canetti-Holmgren-Jain-
Vaikuntanathan’15][Koppula-Lewko-Waters’15]...




10: the “Central Hub” [Sahai-Waters'13]

Nash Equilibrium
[Bitansky-Paneth-Rosen’14]

'\ Witness

NIZKs/SNARGs < | _~7  Encryption
10
Deniable Software

Encryptign watermarking
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21mput]_gecyrity Loss “Spreads”

\ Witness Encryption

NIZKs/SNARGs .
- . / Large ciphertext
Large CRS iO

N



Question: Can we build iO with a security loss
independent of the input length?
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Co(x™) # C1(x7)
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Broader Perspective

Non-Falsifiable definition appears in many other places in crypto

Example: Soundness of Proof Systems

(for L € NP)

[ If x & L,]any cheating proof should be rejected

Non-Falsifiable

[Gentry-Wichs’10] impossibility for SNARGs
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10

Reduction checks Cy(x*) = C;(x™) for every x*

with 2*"l-loss
Previous Works: - —-—-—--=--—-—-—-—- - - - eooo-——-

“Vx Cy(x) = C;(x)” can be decided in P

[Garg-Pandey-Srinivasan’16, Garg-Srinivasan’16,
Garg-Pandey-Srinivasan-Zhandry’17]
[Liu-Zhandry’17]

This Work: Leverage math. proofs of “Vx Cy(x) = C;(x)”
to avoid the 2/*|-loss



Why Math. Proofs Exist?

Recall: when iO is used in the security proof

* Construct Cy, (4
* Write a math. proof for V x Cy(x) = C;(x)
* Apply iO security to derive iO(Cy) =, i0(Cy)

The proof must be “short” (length < 2"")
Otherwise, we (human brain) can’t understand it.
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Our Results | (for Propositional Logic)

i0 with security loss independent of |input| for any ckts {C1},,, {C%}.,
where C1(x) & CZ2(x) have poly-size proofs in Extended Frege systems.

(Assumptions: 2P _secure LWE, OWF,
iO for circuits of size independent of |input|.)




Extended Frege System (EF)

Variables represent True/False

p-@-or)>((p>q9 > pP-or))

e AXioms:
p—(q—Dp)
p — —p
* Inference Rule:
p,p > qkFq
e Extension Rule:
e & @

What theorems have
poly-size EF-proofs?

(assign a new variable e to a formula ¢)
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Cook’s Theory PV [cook7s]

Poly-size Proofs in
EF

Variables represent natural numbers

Propositional Translation

h

Theory PV

Allow definition of any polynomial-time functions, e.g.

= Arithmetic: +, —, X,+, <, <, |-], mod, ...

" Logic Symbols: —, —,A, ...




Our Results Il (for Cook’s Theory PV)

10 for any unbounded-input Turing machines M, M,,
W|th I_PV Ml(X) —_ MZ (X)

Assumptions: sub-exponential security of LWE & iO for circuits.
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What Theorems Can PV Prove?

Prior work: This work:

I”

e Correctness of “natura
algorithms in P

I”'

Many crypto algorithms are “natura
ElGamal Encryption

Regev’s Encryption
Combinatorial Theorems Puncturable PREs

* Basic Linear Algebra

Unprovable Thoerems (assuming Factoring):

Fermat’s Little Theorem

 Correctness for “Primes isin P”
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Our Results IlI: Applications

SNARGs with CRS size poly(A,Tz) for L € NP N coNP, if

“L N L = ¢” is provable in PV,
( I_PV E(X,W) =1- R(X,W) — O)

R (resp. R) is NP-relation machine of L (resp. L )

(Also apply to witness encryptions with ciphertext size poly(A, Tr))
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How do we leverage math. proofs?

(An Overview)
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0-Equivalence for Circuits

C and C'are almost the same, except for
a functionality equivalent sub-circuit of size O(log n)

- C'



EF-Proofs imply 6-Equivalence

Poly. EF proof for Cy(x) < C;(x)

~

CO — C(l) C(Z) C(?’) C(POlJ’) — Cl

CWand C¢*tVare §-equivalent
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Focus: iO for 0-Equivalent Ckts

Assume iO for d-Equivalent Ckts: 8i0
Si0(CD) = §io(C@®) = §i0(CP) . 5i0(CH)

Total Security Loss = £’ -Loss of §i0 (¢" = poly)

If loss of §i0 is independent of |input]|, so is the total loss.
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Security Proof w/o 21MPutl_| gss

.

O

_

C,C': 5-Equivalent



Security Proof w/o 21MPutl_| gss
%/f;-/

Y,

-
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4%4

Check all inputs to Sub-ckt
Security Loss: 2|subckt input|

C, C’: 5-Equiva|ent — 20(logn) — pOlyI



Security Proof w/o 21MPutl_| gss

— U

Check all inputs to Sub-ckt
Security Loss: 2|subckt input|
= 20U08n) = poly!

70
Z

7
O

C,C': 5-Equivalent
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Goal: EF-Proofs = d-Equivalence

Poly. EF proof for Cy(x) < C;(x)

~

CO = C(l) C(z) C(?’) C'(pOIZV) = Cl

0-equivalent

Alternative View: A sequence of local changes
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Key Observation

Proofs in logic systems are “local”

(Similar to -equivalence)

Each line in EF-proofs is also a circuit

(Can be used to modify circuits)
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Stage Il: Grow the Proof

EF-Proof of Cy(x) < C,(x): 84,0,, ...,

0,

Op

Add 0; one-by-one

P |

00 /\61 /\"'/\Hi_l /\Hl

Op

oH

Intuition: 8,’s (i.e. lines of the proof) are “true”,
so the functionality is preserved.
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How @:; is derived:

* Axiom 1 = g. (Axioms are tautologies)
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I-th Step: Add 6;

Before:

After:

How @:; is derived:

e AXxiom

 Inference Rule: Modus Ponens (p,p = q + q)
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I-th Step: Add 6;

Before: C,(x)ApA---A(p—qg)A--

After: Co(X)ApA--~A(@P-=>qg)NAgq

How @:; is derived:

e AXxiom

 Inference Rule: Modus Ponens (p,p = q + q)
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I-th Step: Add 6;

Before: C,(x)ApA---A(p—qg)A--

After: Co(X)ApA--~A(@P-=>qg)NAgq

How @:; is derived:

e AXxiom

 Inference Rule: Modus Ponens (p,p = q + q)

pA(p—->q)=pA(p—->q)Aq
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Stage Ill: Switch o, to 04

:00-/\91/\ /\0{, :01-/\91/\ /\.0{,,

0y 01 0 01

L D

O0-Equivalence

0, is “0, < 0,” (A proof of Cy(x) < C;(x) must end with 0, 0, )

09 A (09 © 01) =01 A(0g © 01)
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Stage IV: Shrink the Proof

0, NO; A NO,

Delete 0;
one- by -one

— > A

O0-Equivalence: Similar to “Growing the proof” Stage
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Stage V: Shrink Cj

Delete C,
gate-by-gate

A —>

0-Equivalence:
Before we delete a gate,
the output of that gate is never used.
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More Details: Multi-Arity Gates?

We Use: Multi-arity A-Gate Arity-2 A-Tree
Co(x)NO; ANB, ...\ O, E— A
Co(x) 6; .. 6,

0i0: Only Support O(1)-arity Gates

I
A iO for Ckts %//\
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Gate-by-Gate Obfuscation
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5i0
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: Secret key encryption under key K
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Gate-by-Gate Obfuscation

: Secret key encryption under key K
K

Gateg (L™ [Mr | )

Decrypt m;, m,
my = g(wy, wy)

Output: m,
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Mix-and-Match Attack

)

Input: x /

. /& Mix-n-Match
Input: x’/%//<

A

The obfuscated gate reveals
more info than it should do.
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Add Authentication

V wire w, sign ct,, with x:

oy = MACk, (ctwl]x)

Gate,(cty, cty., 0y, 0y, X)

Verify MAC gy, 0, w.r.t. [, 1

...(Decrypt, compute g, and re-encrypt)...

Also sign and output g, w.r.t. o

x is too long!

Gate g may not depend on the entire x
(e.g. NCO circuits)




Define Dependence




Define Dependence

Dep(l) := {w| | depends on wire w}




Define Dependence

Dep(l) := {w| | depends on wire w}

CT, := {ciphertext of w}yepep) (An Index Set)



Define Dependence

Dep(l) := {w| | depends on wire w}

CT, := {ciphertext of w}yepep) (An Index Set)

(Dep(r), CT,: Similar)



Use CT}, CT, in Gatey

Gateg (Ctl, Ctr, 0, Oy, CTl, CTr)

Check 0 =X MACkl(Ctl”CTl)
Check o, =" MACy (ct,||CT;)
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Gateg (Ctl, Ctr, 0, Oy, CTl, CTr)
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Use CTy, CT, in Gatey

Gateg (Ctl, Ctr, 0, Oy, CTl, CTr)

Check 0 =7 MACkl(Ctl”CTl)
Check o, =" MACy (ct,||CT;)
Check consistency of CT; and CT,

...(Decrypt, compute g, and re-encrypt)...

CT, and CT, are Consistent:
CTy, CT, contains same ciphertexts in Dep(l) N Dep(r)




Proof of Security (xigh Level) ¢, C,

For any 8-Equivalent Ckts: . .




Proof of Security (xigh Level) ¢, C,

For any 8-Equivalent Ckts: . .

510(60)

k




Proof of Security (xigh Level) ¢, C,

For any #-Equivalent Ckts: . .

5i0(Cy)

§%///: \-s
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For any 8-Equivalent Ckts: . .

510 (Cy) Direct-Gate,(cty, ct,, 0y, 0., CT;, CT,)

\\\ heck MACs & consistency)...
§//\ (e )
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Proof of Security (xigh Level) ¢,

For any #-Equivalent Ckts:

5l0(CO) DireCt'Gateg (Ctl; Ctr; 0y, Oy, CTl' CT‘I‘)

//\ ...(check MACs & consistency)...
\ :

2

Sub-ckt.input « Decryt (CT;, CT; )

MAC Directly Compute Sub-ckt(sub-ckt.input)
security

...(encrypt output wire)...
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Sub-ckt: Direct-Gates
but use (4

\\ \\\\ N\
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Proof of Security (High Level)

Sub-ckt: Direct-Gates
but use (4

\\\\\ \\ N %\\\\\\\ \\ N
MAC k 0 Security Q\\\\\ k
security ( D — D |

0i0(C,)  Sub-ckt: Direct-Gates 6i0(C,)
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Proof of Security (High Level)

Extend this idea to general circuits?
Challenge: |CTy| is too large.

Sub-ckt: Direct-Gates ]
but use (4 6i0(C1)

RN -
M;C iO Security &\\\ k
security ( D — D )

010 (CO) Sub-ckt: Direct-Gates



Proof of Security (High Level)

Observation:

g only depends on
sub-ckt input

Extend this idea to general circuits?
Challenge: |CTy| is too large.

Sub-ckt: Direct-Gates
but use (4

\\\\ \a NI \\\\
\ \\ MAC ® k 10 Security N k
security ( D — D )

5i0(C,)  Sub-ckt: Direct-Gates 6i0(C;)
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Somewhere Statistical Binding (SSB) Hash

[Hubacek-Wichs’15, Okamoto-Pietrzak-Waters-Wichs’15]

Normal Mode Trapdoor Mode
K ~e K*(S < [n])

h « SSB(K, my, m, ..., m,,) h « SSB(K*, 1m,, m|s )

In Our Setting: (S := {input wires to sub-ckt})



SSB Hash CT;y, CT,
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SSB Hash CTy, CT..

. | h; = SSB(CT))
Outside Gatey: h, = SSB(CT,)

Gate,(ct;, cty, 01,01, hy,h, )

Check oy =" MACy,(cty|| h; )
Check o, =' MACy (ct,|| h;)

Check consistency of CT; and CT,.???

...(Decrypt, compute g, and re-encrypt)...

SNARGs?
No Statistical Soundness

Consistency for sub-ckt input
(binding positions) is enough
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Recall: SNARGs for Batch-Index
[Choudhuri-Jain-Jin’21]

Index Language: L = {i|3w: C(i,w) = 1}
@ CRS “1,2,..k € L” CRS

T —_— > «

Verify in time poly (A, |C|,log k)

Accept/Reject

Completeness:
If [k] € L, honestly generated proof will be accepted.
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Somewhere Statistical Soundness

Normal Mode Trapdoor Mode
CRS c CRS*(S)

. &

2

2

Statistical Sound for S:

If S € L does not hold, then
unbounded adv. can’t find cheating proof.
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Construct Succinct Proof of Consistency

SSB by Merkle Tree

| AOn

cty ct, L cty ct;/ L L cty
SSB(CT)) SSB(CT,)

!

Prove: Yw € [N], 3 local openings & ct,,, ct,,’ s.t.
if ct,, #1 A ct,, #1, then ct,, = ct), (consistent)

Proof via SNARGs for Batch-Index




Add Proof of Consistency

] hl — SSB(CT{)
Outside Gate,: h, = SSB(CT,.)

Gate, (cty, ct,., 0y, 0., hy, hy, )

...(Verify the MACs)...

...(Decrypt, compute g, and re-encrypt)...




Add Proof of Consistency

] hl — SSB(CT{)
Outside Gate,: h, = SSB(CT,.)

1 : consistency proof for h;, h,.

Gate, (cty, ct,., 0y, 0., hy, hy, )

...(Verify the MACs)...

...(Decrypt, compute g, and re-encrypt)...




Add Proof of Consistency

] hl — SSB(CTI)
Outside Gate,: h, = SSB(CT,.)

1 : consistency proof for h;, h,.

Gate, (cty, ct,., 0y, 0., hy, hy, )

...(Verify the MACs)...

Verify the proof T w.r.t. hy, h,

...(Decrypt, compute g, and re-encrypt)...
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Recall: Cook’s Translation

Cook’s Translation

Poly-size £EF-Proofs h Proofs in PV

Input length n

Fer Cipn(x) © Copn(x) h Fpy Mi(x) = My (x)

Cp n (x): Circuit that computes M,, for input x| = n.

Use 6i07?
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iO for TMs from 010

N. = )log4

(No ) C,

All Input length C _
M n <N, Z 010

Turing Machine —> »




iO for TMs from 010

(No = 21°8%)
All Input length
M n < Ny
Turing Machine —

5i0(Cy)
50 5i0(Cy)
—
5i0(Cy,)

Obfuscated Program



iO for TMs from 010

— logA
(No = A757) C, 5i0(Cy)
All Input length C . 0i0(C
M n < Ny 2 5i0 ( 2)
Turing Machine —> »
Cro 5i0(Cy, )

Obfuscation time is super-poly! Obfuscated Program
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Efficient Construction

Cy1, Cy, ..., Cy, have a succinct description

i.e. 3 circuit [M](-,7), s.t. [M](n, i) outputs
the description of i-th gate in C,

Recall: 6i0 Construction
6i0

91,92 - g

10(Gatey,)
i0(Gatey,) Generate Gate
from [M](-,)
iO(Gateglq)
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—)

M
Turing Machine
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Efficient Construction

(iO for small circuit)
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Efficient Construction

(iO for small circuit)
M » UGate(-,,") » i0(UGate)
Turing Machine

“Uniform” Gate UGate(n, i, input’)
Get description of i-th gate:
g < [M](n, 1)
Emulate
Gateg,(input’)
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Summary & Future Directions

Inference Rules in Techniques to argue
Logic systems for ﬁ e - :
Proving Equivalence Indistinguishability for iO

EF | PV ﬁ d-equivalence & 6i0

ZFC

(Zermelo-Fraenkel set theory “ ’)

with axiom of Choice) °




